Table of Contents

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>2</td>
</tr>
<tr>
<td>Requirements</td>
<td>3</td>
</tr>
<tr>
<td>Installation</td>
<td>3</td>
</tr>
<tr>
<td>The PivotChart workspace</td>
<td>4</td>
</tr>
<tr>
<td>The PivChart.sf User Command File</td>
<td>5</td>
</tr>
<tr>
<td>Basics</td>
<td>5</td>
</tr>
<tr>
<td>The LC.PivotChart Toolbar</td>
<td>11</td>
</tr>
<tr>
<td>The PivotGrid toolbar buttons</td>
<td>12</td>
</tr>
<tr>
<td>The Chart Toolbar Buttons</td>
<td>16</td>
</tr>
<tr>
<td>The Skins button</td>
<td>16</td>
</tr>
<tr>
<td>Exporting the Grid, the Chart or Both</td>
<td>18</td>
</tr>
<tr>
<td>Using LC.PivotChart from APL</td>
<td>21</td>
</tr>
<tr>
<td>Creating an instance of LC.PivotChart</td>
<td>21</td>
</tr>
<tr>
<td>Populating the LC.PivotChart Control</td>
<td>21</td>
</tr>
<tr>
<td>The LC.PivotChart API</td>
<td>23</td>
</tr>
<tr>
<td>The LC.PivotChart Properties</td>
<td>23</td>
</tr>
<tr>
<td>The LC.PivotChart Methods</td>
<td>23</td>
</tr>
<tr>
<td>Examples</td>
<td>23</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>35</td>
</tr>
</tbody>
</table>

Copyright © 2015 Lescasse Consulting. All rights reserved.
Introduction

The purpose of LC.PivotChart.dll is to provide APL+Win Users with a PivotGrid tool associated with a powerful Chart control.

LC.PivotChart is a very useful and powerful tool for analyzing and visualizing your data.

LC.PivotChart is delivered as a C# User Control which can be easily embedded in an APL+Win Form.

The PivotGrid and Chart provided by PivotChart can be customized through code using ⎕wi, but the characteristics of this product is its very high level of interactivity which allows end users to explore their data in almost any imaginable way.

LC.PivotChart is a commercial product.

LC.PivotChart requires the latest version of APL+Win.

Requirements

In order to use LC.Charts, you need:

1. To have the .Net Framework 4.5.2+ installed on your computer
2. To have the latest version of APL+Win installed on your computer

Installation

WARNING: LC.PivotChart requires APL+Win v15.1+

LC.PivotChart can be downloaded from:

http://www.lescasse.com/content/PivotChart.aspx
(see: http://www.lescasse.com/content/PivotChartHistory.aspx for details about the latest version!)

where the detailed installation instructions are described.

PivotChartSetup.exe that you need to run: installation takes less than 30 seconds.

Note that there is an Uninstaller that allows you to completely uninstall LC.PivotChart from your computer if you want or need to.
The PivotChart workspace

A PivotChart.w3 workspace is provided in APL+Win v15.1 format.

It contains 11 sample niladic APL functions:

- PivotChart
- PivotChartMom
- PivotChart2
- PivotChart3
- PivotChart4
- PivotChart5
- PivotChart6
- PivotChart7
- PivotChart8
- PivotChart9

...to demonstrate how to display APL data in an APL+Win Form hosting an LC.PivotChart object.

The PivotChartMom is identical to PivotChart except that it uses ⎕mom enums which allows for a slightly more object oriented and better documented approach. However, PivotChartMom is a little more verbose than PivotChart. You can choose either of these two ways for creating your own APL+Win forms containing a PivotChart control.

The PivotChart2 to PivotChart9 examples all use the zObjects technology and the zPivotChart object. This is the recommended way to use LC.PivotChart.

Note that in the provided examples, the LC.PivotChart object uses the whole APL+Win Form client area, but LC.PivotChart being a User Control, you can easily place it anywhere on a form and give it the size you wish with the use of the where property. The PivotChart3 example demonstrates that.

Please also note that you can make the PivotChart2 to PivotChart9 examples topmost forms by entering the following expression after running those functions:

```
'ff'⎕wi'topmost'1
```

This way you could easily see the effect of running PivotChart API properties and methods from the APL Session.

Also, the PivotChart object alias name is called pc for all PivotChart example functions. If you want to test the PivotChart API from the APL Session you just need to use 'pc' as the ⎕wi left argument;

Example:

1 zObjects is a freeware developed by Lescasse Consulting
2 The where property arguments must be expressed in pixels.
3 See a description and example of the PivotChart API later in this document
The PivotChart.sf User Command File

Functions in the PivotChart.w3 workspace are also provided in a User Command file called PIVCHART.SF.

Basics

Start APL and load the PivotChart.w3 workspace.

Run the PivotChart function as follows:

PivotChart

You should see the following APL+Win Form being displayed:
The **LC.PivotChart** User Control contains 3 parts:

- A toolbar at the top containing menus and buttons
- The **PivotGrid** in the middle
- The **Chart** at the bottom
The PivotGrid itself is made of various parts:

- The Field names which are located in 4 possible areas:
 - row area
 - column area
 - filter area
 - data area
- The Row Headers
- The Column Headers
- The Grid Data

You can drag and drop Field names from one area to another area to change the layout and grouping of the resulting grid.

For example, drag and drop the Month field to the very right of the Product field name and select the first 2 columns for VB.Net only.
You should get something like:

Or maybe it would make more sense to display the Month field in columns: just drag the Month field and drop it to the right of the Year field; you should get:
Currently the PivotGrid displays **Prices**: you may want to also display **Sales**. Drag the **Sales** field to the immediate right of the **Prices** field: just drop it when you see the up and down arrow cursor. You should now see:
Note that each time you change the layout of the PivotGrid, all cells are selected by default and the Chart at the bottom automatically adapts to the selected cells in the grid.

If you hover your mouse over a cell in the grid like the VB.Net Sales for 01-Jan, a tooltip tells you what is displayed:
In the above case we are seeing the **Percent of Grant Total (\%gt)** of the **Sum** of Sales and it is displayed with **0 decimals**.

There are toolbar buttons which allow the end user to fully customize the results, like:

- changing the **Summary Type** for any field (sum, count, average, min, max, etc.)
- changing the **Summary Display Type** for any field (values, index, rank, % of row, % of column, etc.)
- changing the **Number of Decimals** displayed for any field,

All this can be combined, resulting in all kinds of possible data analysis. You can additionally choose among about 40 different types of charts to visualize your pivot grid data and use the Chart toolbar buttons to customize the chart.

The LC.PivotChart Toolbar

The LC.PivotChart toolbar allows the end user to very much customize the content of the PivotGrid and the Chart.

It also allows to:

- Export either the Grid content or the Chart or both the Grid and the Chart to various formats (**CSV, Text, HTML, MHT, PDF, RTF, XLS, XLSX**)
Copy the Grid content to the clipboard

Start Excel and load the PivotGrid into an Excel workbook that can then be edited and saved

The PivotGrid toolbar buttons

Before we describe the 3 PivotGrid toolbar buttons, let's make it very clear that these buttons affect the field which is currently selected in the PivotGrid.

So, if you are currently displaying both the Prices field and the Sales field in the PivotGrid as in the last screen shot, and if you want to change the number of decimals displayed in the Sales field, you must first click anywhere in the Sales field to select it. Then you can use the toolbar Decimals dropdown button to change the number of decimals for the Sales field. Your change will only affect the Sales field.

If the current PivotGrid selection spans over more than one field, there is always only one of these fields that contain the active cell. It is this field which will be affected by your toolbar button choice.

The first PivotGrid toolbar button allows you to change the **Summary Type**. It includes the following choices:
<table>
<thead>
<tr>
<th>Summary Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>the average of the values</td>
</tr>
<tr>
<td>Count</td>
<td>the number of values (excluding Null and DBNull values)</td>
</tr>
<tr>
<td>Custom</td>
<td>specifies whether calculations should be performed manually, by handling the CustomSummary event (requires custom C# programming on demand)</td>
</tr>
<tr>
<td>Max</td>
<td>the largest value</td>
</tr>
<tr>
<td>Min</td>
<td>the smallest value</td>
</tr>
<tr>
<td>Stddev</td>
<td>an estimate of the standard deviation of a population, where the sample is a subset of the entire population [division by n-1]</td>
</tr>
<tr>
<td>Stddevp</td>
<td>the standard deviation of a population, where the population is all of the data to be summarized [division by n]</td>
</tr>
<tr>
<td>Sum</td>
<td>the sum of the values</td>
</tr>
<tr>
<td>Var</td>
<td>an estimate of the variance of a population, where the sample is a subset of the entire population [division by n-1]</td>
</tr>
<tr>
<td>Varp</td>
<td>the variance of a population, where the population is all of the data to be summarized [division by n]</td>
</tr>
</tbody>
</table>

When you change the **Summary Type**, the data displayed in the grid gets immediately adjusted according to your choice and consequently the Chart also gets automatically adjusted.

Once you have chosen a Summary Type, you can use the 2nd toolbar PivotGrid button to change the **Summary Display Type**. You can choose among:

4 Please contact Lescasse Consulting (eric@lescasse.com) for such a need.
<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Variation</td>
<td>the absolute variation between the current value and the previously calculated value for the current field is displayed in the cell</td>
</tr>
<tr>
<td>Default</td>
<td>the calculated summary values are displayed "as is" (this is the same as Values)</td>
</tr>
<tr>
<td>Index</td>
<td>an index value that reflects the summary value's importance in its row and column context. This value is calculated as follows: ((value \text{ in cell}) \times (Grand \text{ Total of Grand Totals})) / (((Grand \text{ Row Total}) \times (Grand \text{ Column Total})))</td>
</tr>
<tr>
<td>Percent of Column</td>
<td>for data cells, the percentage of the column's total value is displayed; for total cells, the percentage of the column's grand total value is displayed</td>
</tr>
<tr>
<td>Percent of Column Grand Total</td>
<td>percent of the summary in the Column Grand Total value</td>
</tr>
<tr>
<td>Percent of Grand Total</td>
<td>percent of the summary in the Grand Total value</td>
</tr>
<tr>
<td>Percent of Row</td>
<td>for data cells, the percentage of the row's total value is displayed; for total cells, the percentage of the row's grand total value is displayed</td>
</tr>
<tr>
<td>Summary Type</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Percent of Row Grand Total</td>
<td>percent of the summary in the Row Grand Total value</td>
</tr>
<tr>
<td>Percent Variation</td>
<td>the percentage variance between the current value and the previously calculated value for the current field is displayed in the cell</td>
</tr>
<tr>
<td>Rank in Column (Largest to Smallest)</td>
<td>the summary value's rank in its column, with the largest value in the column as 1, and each smaller value assigned a higher rank</td>
</tr>
<tr>
<td>Rank in Column (Smallest to Largest)</td>
<td>the summary value's rank in its column, with the smallest value in the column as 1, and each larger value assigned a higher rank</td>
</tr>
<tr>
<td>Rank in Row (Largest to Smallest)</td>
<td>the summary value's rank in its row, with the largest value in the row as 1, and each smaller value assigned a higher rank</td>
</tr>
<tr>
<td>Rank in Row (Smallest to Largest)</td>
<td>the summary value's rank in its row, with the smallest value in the row as 1, and each larger value assigned a higher rank</td>
</tr>
<tr>
<td>Values</td>
<td>the summary values</td>
</tr>
</tbody>
</table>

So, the data displayed in the Grid depends on both the **Summary Type** and the **Summary Display Type**.

The 3rd toolbar PivotGrid button allows you to change the number of decimals for the field containing the active cell.

When you select a number of decimals, and if you have defined a format string for the active field, the system makes its best attempt to respect your format string except that it uses regular expressions to change the number of decimals according to your choice.

So, for example, if you have defined the format string to be:

"#.0 €; #.0 €;"'

And then change the number of decimals to 2, the system now displays the data using the following format string:

"#.00 €; #.00 €;"'

Note that selecting the **Count** Summary Type forces the format string to temporarily display raw numbers with no decimals, no currency symbol, i.e. numbers are displayed as plain integers.

Similarly, selecting any of the **Rank** Summary Display Types forces the format string to temporarily display raw numbers with no decimals, no currency symbol, i.e. numbers are displayed as plain integers.

Also, selecting any of the **Percent** Summary Display Types forces the format string to temporarily display percentages, using the Percentage Format String you’ve defined in the layout variable, or using the currently selected number of decimals if you have not defined any Percentage Format String in the layout variable.
However, the Format String you have defined in the layout variable, if any, is never lost and if you choose a Summary Type and Summary Display Type which do not force specific format string, it is the one which you have defined in the layout variable which will be used.

The 4th PivotGrid toolbar button allows you to Show or Hide totals in the grid.

The Chart Toolbar Buttons

The Chart toolbar buttons let you customize the way the Chart associated with the Grid is displayed.

First let’s emphasize that some of the toolbar buttons do not always have an effect on the chart, depending on the chart type. For example, the 9th Chart toolbar button which displays or hides point symbols, does not have any effect on bar charts (simply because point symbols do not make sense for a bar chart).

<table>
<thead>
<tr>
<th>Button</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The 1st Chart toolbar button lets you choose the type of chart you want to display. There are about 40 possible choices including 2D and 3D charts.</td>
</tr>
<tr>
<td></td>
<td>The 2nd Chart toolbar button is a toggle button which lets you maximize or un-maximize the chart.</td>
</tr>
<tr>
<td></td>
<td>The 3rd Chart toolbar button is a toggle button which lets you maximize or un-maximize the grid.</td>
</tr>
<tr>
<td></td>
<td>The 4th Chart toolbar button is a toggle button which lets you display the chart to the right of the grid or below the grid.</td>
</tr>
<tr>
<td></td>
<td>The 5th Chart toolbar button is a toggle button which allows you to rotate the chart 90 degrees.</td>
</tr>
<tr>
<td></td>
<td>The 6th Chart toolbar button is a toggle button which lets you hide or show the chart legend.</td>
</tr>
<tr>
<td></td>
<td>The 7th Chart toolbar button allows you to change the legend position. There are 24 possible legend positions (inside or outside the chart) and each click on the 7th chart toolbar button moves the legend to the next position. Note that you can Shift+Click the 7th toolbar button to return to the previous position(s).</td>
</tr>
<tr>
<td></td>
<td>The 8th Chart toolbar button is a toggle button allowing you to display or hide labels on the chart. Labels display point values and in this version of PivotChart, the label values are displayed with 2 decimals regardless of the corresponding field format string.</td>
</tr>
<tr>
<td></td>
<td>The 9th Chart toolbar button is a toggle button letting you display or hide point symbols.</td>
</tr>
</tbody>
</table>

The Skins button

The Skins dropdown button lets you choose among 24 possible different skins for the PivotChart control.

Note that, in this version of LC.PivotChart, choosing a Skin has no effect on the PivotChart toolbar.

Let’s for example choose the DevExpress Dark Style skin:
Or the Xmas 2008 Blue skin (which you can automatically programmatically select in your application when approaching Christmas time):
Exporting the Grid, the Chart or Both

The File menu has many options for exporting the Grid, the Chart or both the Grid and the Chart to many different formats:

If you choose one of the first 3 options, you will be presented with an interactive Print Preview form.

For example, assuming you choose Export Both with Preview, the following form is displayed:
You can then:

- drag and drop the margins to adjust them with your mouse
- use the File menu to change the Page Setup, Print, Export the document or automatically send it by Email
You can also use the Background menu to change the background color and/or add a Watermark:
Using LC.PivotChart from APL

Creating an instance of LC.PivotChart

LC.PivotChart is a C# ActiveX User Control: as such, it requires a form to host it.

So the first step is to create an APL+Win Form:

'ff' wi' *Create' 'Form' ('*scale' 5)

You can then create an instance of LC.PivotChart.PivotChart as a child of this form:

'ff' wi' *.pc.Create' 'LC.PivotChart.PivotChart'

You’ll generally want to force this control to use the entire form area, but are not forced to and you can use the where property to locate it and size it as you want.

'ff' wi' *.pc. where' '-' 1 -1,2+'ff' wi' *size'

Most often you’ll also want to handle the APL+Win Form onResize event to automatically resize the LC.PivotChart control when the form is resized5.

Populating the LC.PivotChart Control

The next step is to populate the LC.PivotChart control with your own data.

This is easily done by creating a “layout” variable and passing it to the XPopulate method.

5 Look at the PivotChart APL function in the PivotChart.w3 workspace (and also reproduced in Appendix 1) for an example.
The layout variable is a nested matrix currently using 9 columns defined as follows:

layout[;1]	field name
layout[;2]	field data (vector)
layout[;3]	field area (filter, row, col or data)
layout[;4]	field summary type (average, count, custom, max, min, stddev, stddevp, sum, var, varp or " if no summary type applies)
layout[;5]	field summary display type (absvar, default or ", index, %col, %colgt, %gt, %row, %rowgt, %var, rankcoll2s, rankcols2l, rankrowl2s, rankrows2l, value)
layout[;6]	column width (or -1 to use a best fit column width)
layout[;7]	percent format string? (format string to be used when displaying percentages or " to let the system choose the percent format string)
layout[;8]	format string (format string to be used when displaying values or " to let the system choose the format string)
layout[;9]	field sort order (ascending, descending or ")

Once you have created your layout variable, just use the following instruction to populate the LC.PivotChart object:

```
  'ff'wi'*.pc.XPopulate'layout
```

From there, you’re in business and can start exploring your data in all kinds of ways using the LC.PivotChart control.

6 Note that more columns could be added in later releases
7 All format strings must be expressed as valid Microsoft.Net format strings (see : TODO: complete here)
The LC.PivotChart API

Very often what is described above will be enough programming effort for using LC.PivotChart or letting your own end users use LC.PivotChart.

You can rely on them to interactively use the Control to explore the data by themselves.

However, LC.PivotChart includes its own API and you can programmatically control it from APL using ⎕wi.

The LC.PivotChart Properties
LC.PivotChart includes the following properties:

<table>
<thead>
<tr>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>xAreaTypes</td>
</tr>
<tr>
<td>xChartType</td>
</tr>
<tr>
<td>xChartTypes</td>
</tr>
<tr>
<td>xEnableColumnFit</td>
</tr>
<tr>
<td>xFieldNames</td>
</tr>
<tr>
<td>xIsChartMaximized</td>
</tr>
<tr>
<td>xIsChartRotated</td>
</tr>
<tr>
<td>xIsGridMaximized</td>
</tr>
<tr>
<td>xIsShowLabels</td>
</tr>
<tr>
<td>xIsShowLegend</td>
</tr>
<tr>
<td>xIsShowMarkers</td>
</tr>
<tr>
<td>xIsShowTotals</td>
</tr>
<tr>
<td>xSkin</td>
</tr>
<tr>
<td>xSkins</td>
</tr>
<tr>
<td>xSummaryDisplayTypes</td>
</tr>
<tr>
<td>xSummaryTypes</td>
</tr>
<tr>
<td>xSymfonyplayTypes</td>
</tr>
<tr>
<td>xTileHorizontal</td>
</tr>
<tr>
<td>xToolbarVisible</td>
</tr>
<tr>
<td>xMaxAllowedSeries</td>
</tr>
</tbody>
</table>

The LC.PivotChart Methods
LC.PivotChart includes the following methods:

<table>
<thead>
<tr>
<th>Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>XCopyToClipboard</td>
</tr>
<tr>
<td>XGetFormatString</td>
</tr>
<tr>
<td>XGetPctFormatString</td>
</tr>
<tr>
<td>XGetSummaryDisplayType</td>
</tr>
<tr>
<td>XGetSummaryType</td>
</tr>
<tr>
<td>XPopulate</td>
</tr>
<tr>
<td>XResumeLayout</td>
</tr>
<tr>
<td>XSelectAllCells</td>
</tr>
<tr>
<td>XSetArea</td>
</tr>
<tr>
<td>XSetColumnWidth</td>
</tr>
<tr>
<td>XSetDecimals</td>
</tr>
<tr>
<td>XSetFormatString</td>
</tr>
<tr>
<td>XSetPctFormatString</td>
</tr>
<tr>
<td>XSetSummaryDisplayType</td>
</tr>
<tr>
<td>XSetSummaryType</td>
</tr>
<tr>
<td>XSuspendLayout</td>
</tr>
</tbody>
</table>

Examples
Using the LC.PivotChart API is straightforward.

Load the PivotChart.w3 delivered workspace

Run the PivotChart2 function:

 PivotChart2

Note that zObjects use alias objects names and that the PivotChart object is called pc in function PivotChart2.
Then, you can try the following expressions and watch the effect on the LC.PivotChart control:

```plaintext
80 TELPRINT >[2]'pc'wi'xChartTypes'
area3d points spline
area radararea stackedarea3d
bubble radarline stackedarea
candlestick radarpoint stackedbar3d
doughnut3d sidebysidebar3d stackedline3d
doughnut sidebysidebar stackedline
fullstackedbar3d sidebysidefullstackedbar3d stackedline
fullstackedbar sidebysidefullstackedbar stackedsplinearea3d
line3d sidebysidestackedbar stackedsplinearea
line sidebysidestackedbar steparea3d
manhattanbar spline3d steparea
pie3d splinearea3d stepline3d
pie splinearea stepline

'pc'wi'xChartType' 'area'
```
```r
'pc' wi*xChartType' 'doughnut'
```
'pc' wi '*xChartType' 'radararea'
`pc wi *xChartType 'manhattanbar'`
'pc' wi 'xChartType' 'doughnut3d'

80 TELPRINT >[2] 'pc' wi 'xSummaryDisplayTypes'
absvar index %colgt %row %var rankcols2l rankrows2l
default %col %gt %rowgt rankcol12s rankrow12s
Remember that the Summary Display Type, as well as the Summary Type and the Number of Decimals are field dependent, so we must supply the field name (not case sensitive).
Note that, even though we chose %gt, i.e. percent of grand total, the displayed percentages are around 100% in each cell: this may surprise you at first, but always remember that the displayed values also depend on the Summary Type. In the current case, the Summary Type is set to Average, so the result makes sense.

Most often, when displaying one of the “percent” Summary Display Types, we want to choose a Summary Type of **Sum** or **Count**.

```
'pc'\w*XSetSummaryType' 'prices' 'sum'
```

The results now makes more sense.

Let’s change the number of decimals to 2:
Now let’s hide the legend:

```
'pc' wi'*XIsShowLegend' 0
```

If you want to see maximum prices by Month and by Region, you can do:

```
'pc' wi'*XSetArea' 'Region' 'col' 0
'pc' wi'*XSetArea' 'Year' 'filter' 0
'pc' wi'*XSetArea' 'Month' 'row' 0
'pc' wi'*XSetArea' 'Product' 'filter' 0
'pc' wi'*XSetDecimals' 'prices' 2
```

The **SetArea** method moves a field from an area to another area: the 3rd argument indicates what the position of the field should be in the specified area.
You can maximize the Chart or the Grid at any time using the **IsChartMaximized** or **isGridMaximized** method:
And you can hide the toolbar at any time using the ToolbarVisible property:
Appendix 1

Here is the sample APL \texttt{PivotChart} function showing how to use \texttt{LC.PivotChart} and embed it in an APL+Win Form:

\begin{verbatim}
∇ PivotChart2;cntries;layout;months;nbRecs;products;years
[1]
[2] nbRecs←300
[3] months←'Jan' 'Feb' 'Mar' 'Apr' 'May' 'Jun' 'Jul' 'Aug' 'Sep' 'Oct' 'Nov' 'Dec'
[4] months←(~2↓'0',¨⍕¨⍳12),¨'-',¨months
[5] cntries←'France' 'Canada' 'USA'
[6] products←'APL+Win' 'C#' 'VB.Net' 'Javascript' 'AngularJS'
[7] years←2010+⍳5
[8]
[9] A Define the PivotChart fields
[10] A layout: 9-column nested array with one PivotChart field per row
[12] A [;2] = column data (1D array)
[14] A [;4] = summary type (average, count, custom, max, min, stddev, stddevp,
[16] A [;5] = summary display type (absvar, default or "%", index, %col, %colgt, %gt,
[17] A %row, %rowgt, %var, rankcoll2s, rankcols2l, rankrows2l)
[19] A [;7] = % format string (i.e. "p2")
[20] A [;8] = format string (i.e. ",#,###.00")
[21] A [;9] = sort order ("", "ascending" or "descending")
[22]
[23] layout←6 9⍴⊂''
[24] layout[;1]←'Product' 'Year' 'Prices' 'Region' 'Sales' 'Month' A field names
[26] layout[2;2]←⊂years[?nbRecs⍴⍴years]
[27] layout[3;2]←⊂?nbRecs⍴1000
[28] layout[4;2]←⊂cntries[?nbRecs⍴⍴cntries]
[29] layout[5;2]←⊂nbRecs~10
[30] layout[6;2]←⊂months[?nbRecs⍴⍴months]
[31] layout[3;3]←'row' 'col' 'data' 'filter' 'filter' 'filter' A field areas
[32] A layout[;3]←'row' 'col' 'data' 'filter' 'data' 'col' A field areas
[33] layout[;4]←'average' 'sum' '' A summary types
\end{verbatim}
layout[;5]←''' 'values' '' '%gt' ''
 A summary display types
layout[;6]←-1
 A width (-1=autofit)
layout[;7]←''' ''#.#%;-#.###%;'' ' ''#.###%;-#.###;'''
 A pct format string
layout[;8]←''' ''#.0 €;-#.0 €;''' ' ''#,###0''
 A format string
layout[;9]←'descending' '' '' ''
 A sort
[40] ←'ff'⎕wi'*Create' 'zForm'('size'.6 .6)('caption' 'zPivotChart Example')
[41] ←'ff'⎕wi'*pc.Create' 'zPivotChart'('whereIc'0 0 '>>' '>>')('anchor' 'lrtb')('Populate'layout)
[42] ←'ff'⎕wi'CenterScreen'
[43] ←'ff'⎕wi'Show'
[44] ∇