

Corporate Office Sales Office

PO Box 361 One Research Ct., Ste. 325

Brielle NJ 08730 Rockville MD 20850

732-223-5575 301-208-7150

APL+Win Version 17.1.01

Copyright (c) 2017 APLNow LLC.

All Rights Reserved

Oct 2, 2017

The APL+Win v17.1.01 release is available and recommended for all current APL+Win subscribers. To

obtain this release, visit http://www.apl2000.com/software.php and click APL+Win v17.1.01 Installer.

Performance Improvement using SSE2 Processor Architecture
What is SSE2 Architecture
SSE2 is a computer processor architecture and associated instruction set which provides for a single

instruction to process multiple data items. Its application to APL+Win array operations has beneficial

effects on performance.

APL+Win and SSE2 Architecture
APL+Win 17.1 includes a new programmer-controlled APLW.INI configuration file setting,

[Experimental] EnableSSE2. When this setting is set to 0 (the default value), the previous behavior of

APL+Win will apply. When this setting is set to 1, when appropriate, the APL+Win interpreter will use

the SSE2 instruction set to optimize array-based arithmetic operations, + - × ÷. The DEMO_SSE2.W3

workspace is included in this release to test this enhancement.

Performance Benefits of SSE2 Architecture in APL+Win
Performance benefits of SSE2 in APL+Win depend on the operations being performed, the operand data

types, the number of data elements in the operation and the workstation environment. Experimentation

using an actual APL+Win application system is recommended to determine the magnitude of

performance improvements with SSE2 in APL+Win. Here is a typical result set:

http://www.apl2000.com/software.php
https://en.wikipedia.org/wiki/SSE2

Corporate Office Sales Office

PO Box 361 One Research Ct., Ste. 325

Brielle NJ 08730 Rockville MD 20850

732-223-5575 301-208-7150

 %Improved All Array Sizes by
Operand Data Type

Operands + - × ÷

Float,float 34.72 41.46 26.56 42.65

fScal,float 47.44 55.53 37.28 44.99

Float,fScal 46.06 56.34 39.08 45.73

Corporate Office Sales Office

PO Box 361 One Research Ct., Ste. 325

Brielle NJ 08730 Rockville MD 20850

732-223-5575 301-208-7150

Float,int 32.18 40.85 42.48 19.02

fScal,int 30.65 39.62 46.58 24.10

Float,iScal 46.68 35.26 52.96 15.84

Int,float 37.06 27.07 36.83 13.72

iScal,float 42.04 37.15 49.25 24.57

Int,fScal 32.96 42.07 36.62 22.30

Overall %Improved All Operations & All Array Sizes: 33.93%

Notes:

 float, int indicate floating point array and integer array respectively

 Array sizes were varied in the range [10, 100000]

 fScal, iScal indicate floating point scalar and integer scalar respectively

 Workstation: Win10 Pro, dual core 2.30Mhz

SSE2 Architecture Precision
SSE2 floating point arithmetic operations, + - × ÷, can yield results that are very slightly different than

traditional APL+Win result values. In most cases results will be identical. But in some cases very slight

rounding differences can cause the low-order bits of the result value to be different. These possible

result differences are limited to the last digit of precision in APL+Win and may not be apparent unless

⎕CT is set sufficiently small or ⎕PP is set sufficient high. However, you should be aware that result

values may not be exactly the same with and without using the SSE2 optimization, even though you are

unlikely to notice this difference with default ⎕CT and ⎕PP settings.

Customer Feedback is important
Since the SSE2 enhancement is currently defined as ‘Experimental’ in this initial release, it is intended

for test purposes only. It is suggested that the SSE2 enhancement not be used in any production

application until sufficient customer experience has been gained and appropriate feedback has been

received and reviewed by APL2000. Please submit feedback on this enhancement to

support@apl2000.com.

Bug Fixes

 Fixed bug where errors thrown by callback handlers were bypassing the :Catch control structure

handler and directly exiting the function (possibly diverted through a :Finally block).

Corporate Office Sales Office

PO Box 361 One Research Ct., Ste. 325

Brielle NJ 08730 Rockville MD 20850

732-223-5575 301-208-7150

Note: In the event this change causes any problems or unexpected results in your application, you

can simply restore the original behavior by adding the setting below to your APLW.INI file:

[Compatibility]

CatchCallbackErrors=0

 In versions 15.1 through 17.0, there were two instances where the ⎕DEF and ⎕FX system

functions incorrectly signaled a NONCE ERROR for an integer scalar argument, instead of returning

(2 ⎕IO) and ⎕IO, respectively. For example:

 ⎕DEF 10

 NONCE ERROR

 ⎕DEF 10

 ^

 In prior versions, it was determined that the ":Try *" statement was operating inefficiently in the

interpreter that likely resulted in several hundred wasted machine instructions. This extra processing

has been eliminated.

 In prior versions, the argument to the :Try control structure statement was not checked for validity.

For example, the 10 in the :Try block below

 :Try 10

 Foo

 :Catch

 CatchHandler

 :EndTry

wasn't flagged as invalid at execution time, resulting in problems when an error occurred in a

function called in the :Try block. This bug was addressed by immediately signaling an error when

the argument isn't a character vector or scalar.

APL2000

www.apl2000.com

