AP12000

Rapid Application Development

APL+Win Version 15.0.08 Beta
Copyright (c) 2015 APLNow LLC.
All Rights Reserved

July 27, 2015

This document contains version history information for this APL+Win v15.0.08 Beta. Please report any
problems or comments pertaining to this beta to support@apl2000.com or to the APL2000 Forum
discussion at http://forum.apl2000.com/viewtopic.php?f=2&t=1051.

Note: The beta will expire on or about Aug 9, 2015.

APL+Win v15.0.08 Beta
Bug Fixes

1. Fixed bug that caused the :ENDREGION keyword in the version 15.0.06 beta to require an argument or else
report the OUTER SYNTAX ERROR error message when saving the function.

2. Fixed bug that caused APL+Win to crash during the copy operation of a workspace when APL+Win improperly
allocated memory for the workspace in low memory instead of high memory (above the 2 GB address space).
This bug is present in APL+Win versions 10.0 to 15.0.

3. Fixed bug that caused APL+Win to hang when executing “0IT 'AuditRefcountsS” after a workspace
copy operation where the resulting workspace occupied both the lower (< 2GB) and upper (> 2GB) workspace
memory. This bug is present in APL+Win versions 10.0 to 15.0.

4. Fixed bug that caused the new random number generator in APL+Win v15.0 to generate orphan objects (bad
referenced pointer objects) in the workspace. To check for the presence of orphan objects in the workspace,
start with making a backup copy of the workspace. Next start APL+Win with the entry below in the APLW.INI
file:

[Config]
NoOrphanClean=7

Then execute the following statement:

Oit 'AuditRefcountsS'
The result 3x2 array, when not all zeros, means orphan objects are present in the current workspace. To clear
the workspace of the orphan objects, execute the following statement until the result array is all zeros prior to

resaving the workspace:

Oit 'AuditRefcountsC'

Page | 1

mailto:support@apl2000.com
http://forum.apl2000.com/viewtopic.php?f=2&t=1051

Update to APL System Colors Dialog

AP122000

Rapid Application Development

New “Search Region” option in the “APL System Colors” dialog accessed in the Tools > Colors menu. This option
controls syntax color highlighting of the temporary selection (highlight) that is visible during the Find and Replace
operations.

P

APL System Colors

Elements to Color

All Elements -

Blank Area
Character Literal
Coding Error
Collapzed Region
Cormment

Control Structure
Execution Hilite
Function Session
Global Quad-¥ariable
Global VW ariable
Label

Line Mumbers
Local Quad-fariable
Local Variable

M atch Hilite

b atrix Session
MOM Reference
Murneric: 5ession
Mumeric Literal
Prirnitiwe

Llad Furctios

Search Hegion I

cezzion [nput
Seasion Output
Svpztem Command
Undefined Mame
Usger Function
Wector Session

B ackaground Caloring
() Use Specified

) Use Session
Background
Text

Drefault

Apply

Syntax Coloring
I Functions

[In Session
Uze Match Hilike
ok,
Caticel

Help

ill

Fig 1. Updated APL System Colors Dialog

Page | 2

AP122000

Rapid Application Development

APL+Win v15.0.06 Beta

Bug Fixes

1. Dyadiciota produced an incorrect negative result instead of correctly reporting the LIMIT ERROR error
message. Example,

Oio

(2147483647/1)10
“2147483648

2. An APL+Win failure occurred when the internal symbol table had overflowed instead of correctly reporting the
SYMBOL TABLE FULL error message.

3. An APL+Win crash occurred when specifying rank>2 empty arrays with an empty trailing dimension for DCM,

[]Jcv, []cN, [JFXand [|DEF. The example below produced an APL+Win crash in versions 15.0 and the
version 15.0.04 beta:

Ofx 2 10 0p""

Update to :ENDREGION keyword

Added support for unexecuted comments at the end of the :ENREGION keyword just as in the :REGION keyword.

Page | 3

AP122000

Rapid Application Development

Update to Find/Replace Dialogs

New in the ‘Search Scope’ region in the Find and Replace dialogs are the options: 1) Selected Text Only and 2) Omit
Collapsed Region. The ‘Selected Text Only’ option restricts the operation to the currently selected text. The ‘Omit
Collapsed Region’ option is only available in the function editor and excludes the operation for any collapsed
region in the function editor. Note that in the Replace dialog the button labelled ‘Done’ in prior versions is
relabelled Cancel.

Find ‘w'hat: -
Feplace ‘with b
| Statuz Replace pending
Find What: - Caze Search Type
Statug Search pending I () Match Case () &PL Tokens
Case Direction @ Case-nsensitive () Match Whole Ward Only
() Match Case @) Case-nzensitive (DUp @ Down Search Scope @ Match Substrings
Search Type Search Scope ") Search Al
() APL Tokens () Search All _ @ Search to End [Find Hext] [Cancsl l
(71 Match Whals wWard Only @ Search to End [Benl] [Unda &l]
() Selected Text Only Deplace Hhao
@ Match Substings () Selected Text Only] ;
[] Omit Collapsed Fegion Help nglt Collapsed Region ’ Fieplace all] [Help l
e
Fig 1. Updated Find Dialog Fig 2. Updated Replace Dialog

Page | 4

Update to APL System Colors Dialog

AP122000

Rapid Application Development

New “Use Match Hilite” option in the “APL System Colors” dialog accessed in the Tools > Colors menu. This option
controls syntax color highlighting of matching elements (opening and closing) and user defined names introduced
in the prior beta release. (Note: The final version (15.1) will also include an option for changing the colors for the

temporary selection that is visible during the Find and Replace operations).

-

APL System Colors

=

Elements ta Colar

Colar 5ample

General Elements

*)

Blank Area
Character Literal
Coding Error
Collapzed Region
Carnrnent

Control Structure
Execution Hilite:
Function Session
Global Quad- ariable
Global ¥ ariable
Label

Lire Mumbers
Local Quad-yariable
Laocal V ariable
katch Hilite

b atrix Seszion
MOM Reference
Mumeric Session
Murmeric Literal
Frirnitive

(uad Function
Sezsion Input
Sezsion Dutput
Systern Command
Undefined Mame
User Function
Yector Session

Sample

Background Coloring
) Use Specified

() Use Session
Background
Text

Default

Apply

Syntax Coloring
In Functions

V| In Session

Ise Match Hilite

0K

Cancel

it

Fig 3. Updated APL System Colors Dialog

Page | 5

AP122000

Rapid Application Development

APL+Win v15.0.04 Beta
New System Function: [|CN - Character Nested-Array

The []CN system function is used to normalize any character argument into a nested vector of character
arrays.

Syntax: res < [|CN array
Argument: array is an array of characters arrays or scalars.

Result: resultis a nested vector of character arrays.

Example:
DISPLAY ('M'" ('F', ('CL1' (3 3p'ABCDEFGHI'))),c'abc', c'def')
o +
| e 4 Frmmm e + |
M	+—+ +>——+		+>——+				
=	F IC1] ¥ABC			a b c	def		
1 - ==+ IDEF			= = = #--=s				
		[GHI		+e------------ +			
o ot							
+E-———————————- +							
B R +
DISPLAY [OCN ('M"' ('F', ('C1' (3 3p'ABCDEFGHI'))),c'abc', c'def')
e +

| +5+ +>+ 4>+ +>——+ +>——+ +>——+ +>——+ +>——+ |

| IMI [F| IC1| [|ABC| IDEF| |GHI| |abc| |def]| |

| +=+ +-+ +--+ +---+ +---+ +-——F +-——+ +--—4+ |

Page | 6

AP12000

Rapid Application Development

New support for syntax color highlighting of matching elements

This enhancement adds support for syntax color highlighting of matching pairs (opening and closing) of the
punctuation marks including single quotes, double quotes, parenthesis, and index brackets in both the session and
the function editor and highlighting of control structure block statements that are at the same nesting level and
user defined names (including line labels) in the function editor.

When the caret is adjacent to an opening or closing parenthesis, index bracket, single quote, or double quote, then
both the opening and closing matched pair of punctuation marks will be highlighted or similarly distinguished
visually. By adjacent we mean that the caret should be immediately to the right or left of the punctuation mark. If
there is ambiguity, such as when the caret is between two adjacent punctuation marks, then this highlighting will
apply to the punctuation mark on the right of the caret. Highlighting of syntax pairs is not done for elements that
occur inside of quoted strings or comments.

If exactly one such punctuation mark is selected, rather than simply having the cursor adjacent to the punctuation
mark, then the corresponding, matching opening or closing punctuation mark will be highlighted as described
before, but the selected punctuation mark will be highlighted for normal selected display. If multiple characters
are selected, or a single character is selected but it is not one of the paired punctuation marks, then the rules for
matched pair highlighting are NOT applied to any character and only normal selection display applies.

The behavior described above is intended to be similar but not identical to the behavior of Visual Studio 2013. In
particular, in Visual Studio, when the caret is to the immediate left of a parenthesis and the immediate right of a
user defined name, both the name and the parenthesis and its matching paired parenthesis are highlighted.
APL+Win will only highlight the element (and its associated matching element(s)) in such cases for the element
that it to the immediate right of the caret, not both elements to the left and right of the caret. In Visual Studio,
paired syntax elements such as parenthesis, get highlighted even when selection extends past the parenthesis,
such as into leading or trailing whitespace or some other characters. APL+Win does not follow their pattern here
either. Selection must select only a single character in order for its paired element to be highlighted.

Highlighting is also done for the keywords of multi-part control structures. For example, when the caret is adjacent
to or within an :IF keyword, all corresponding :ELSEIF, :ELSE, :ENDIF, and/or :END keywords that are at the same
nesting level as the :IF statement are highlighted. Nested :IF statements at deeper or higher levels of containment
are not highlighted. Similarly, if the caret is adjacent to or within the :ELSEIF, :ELSE, :ENDIF, or :END keyword that
are part of an :IF statement, the corresponding other elements of the same control structure nesting level will all
be highlighted as if the caret were in the :IF statement as described above. Note that inline control structure
keywords are not highlighted and also the :IN keyword associated with a :FOR or :FOREACH statement.

If any part of a highlight-able multi-part control structure keyword such as described above is selected and the
selection does not extend before colon at the beginning of the keyword nor past the last character of the keyword,
then all matching keywords at the same nesting level will be highlighted as described above.

The following multi-part control structures will participate in the highlighting described above. In all cases where
structure specific ending keywords such as :ENDIF or :ENDSELECT are listed below, aliases such as :END will be

Page | 7

AP12000

Rapid Application Development

considered surrogates for the fully-qualified ending keyword and will be similarly highlighted. Each line below
specifies which keywords are part of each control structure sequence that begin with the first keyword on the line
and are followed by some number of the other keywords on the line, ending with the ending keyword or one of its
surrogates.

:IF :ELSEIF :ELSE :ANDIF :ORIF :ENDIF

:SELECT :CASE :CASELIST :LIKE :ELSE :ENDSELECT
:WHILE :ENDWHILE

:WHILE :UNTIL

:REPEAT :ENDREPEAT

:REPEAT :UNTIL

:FOR :ENDFOR

:FOREACH :ENDFOREACH

:TRY :CATCHIF :CATCH :CATCHALL :FINALLY :ENDTRY
:TRYALL :ENDTRYALL

:TEST :PASS :FAIL :ENDTEST

:IFDEBUG :ENDIFDEBUG

Finally, user defined names will be highlighted. If the caret is adjacent to or inside any user defined name then all
occurrences of that name in the current function edit session will be highlighted.

Similarly if any portion of the name is selected and the selection does not extend before the first letter of the
name or last character of the name, then all occurrences of that name will be highlighted.

In all cases when the caret is in an ambiguous position adjacent to (between) two syntax elements (such as
between a name and a parenthesis or between two parenthesis) the syntax element on the right will be
highlighted along with all other elements that are associated with that element.

Page | 8

H‘.und Rpphmtm‘n Devel upment

foo;ege; ddd;0i0

A move caret and/or selection through this function to

A see matching parens, brackets, gquotes, or user or system
A names highlighted

a((b(cece ¢ bla))

g () [1 '" Oio parens and names in quotes or comments are
A not highlighted
BEE ¢ (¢) [1 ¢)(xL1 '(XC1'))
ddd eee e [Oio OIO0 [Oi0 OIo 0OsYS [O5vS [sYs
:if d
ccec ddd ¢
-gelect d
:case 1
T
:case 2
ddd
:alse
cce
:end
ccec ddd d
:else
ddd gee b
end
ccc ddd DDD a [IO [Osys
foo
:if 1 ¢ true ¢ :else ¢ false ¢ :end
S
true
:aelse
false
:end

Figure 4: Highlight variable named ccc

Page | 9

foo;cce;ddd;[0i0

R move carst and/eor selection through this function to

AR see matching parens, brackets, quotes, or user or system
A names highlighted

a(l(b(cce ¢ b)e))

g () [1 "' Oio parens and names in quotes or comments are
A not highlighted
cce 0 & 0y EI OC¥EYLR ' LXED'))
ddd ccc e [Oio OIC [0i0 OIo 0OsYS OSyS OsYs
:if d
cce ddd ¢
:select d
:case 1
cce
:case 2
ddd
:else
cce
:end
ccc ddd d
:else
ddd ccc b
:and
ccc ddd DDD a [IO Osys
foo
:if 1 ¢ true ¢ :else ¢ false ¢ :end
& [|
true
:alse
false
:and

Figure 5: Highlight second pair of parenthesis on line 4

Page | 10

Rapid Appli mt.in::mnncvcm_pn;_}en_t.

T foo <F>][
[0] foo;ccc;ddd;[0i0
BE[1] A move caret and/or selection through this function to
| [2] B see matching parens, brackets, quotes, or user or system

L[3] g names highlighted
[4] a((bl(cece ¢ Bla))

B[e] g () [1 '" Oio parens and names in quotes or comments are
LL7] A not highlighted

[8] cec J ¢ €} EX OYGI "Y'

[e] ddd cce e [io OI0 [Oi0 OIc O5YS OSyS OsYs
B[10] :if d

| [11] cce ddd ¢
BE[12] :select d
BH[13] :case 1
LL14] cce
BE[15] :case 2
L[16] ddd
B[17] :else
L[1&] cce
L[19] :end
L[20] cce ddd d
B[21] =:else
L[22] ddd cec b
L[23] :end

[24] ccc ddd DDD a QIO Osys

[28] foo
B[26] :if 1 ¢ true ¢ :else ¢ false ¢ :end
B[27] :if 1
L[2&] true
BH[29] =:else
L[30] false
L[31] :end

™

Figure 6: Highlight first pair of parenthesis on line 8

Page | 11

Rapid Appli mt.in::mnncvcm_pn;_}en_t.

- [r=miEcE|
[0] foo;cce;ddd;[0i0

B[1] A move caret and/or selection through this function to

| [2] P see matching parens, brackets, quotes, or user or system

L[3] A names highlighted
4] a((blcce ¢ bBla))

B[e] g () ['" Oio parens and names in quotes or comments are
LL7] A not highlighted

[8] cec. £ G € LT G XID “CXER")

[2] ddd ccec e [Jio OIC [Oi0 OIc OSYS OSyS OsYs
B[10] :if d

| [11] cce ddd ¢
BE[12] :select d
BE[13] :case 1
L[1iy] cce
BE[15] :case 2
L[1e] ddd
BH[17] :else
L[18] cce
L[19] :end
[[20] ccec ddd d
BE[21] :else
L[22] ddd cce b
L[23] Lkeand
[24] «ccc ddd DDD a QIO [svys
[28] foo
BE[26] :if 1 ¢ true ¢ :else ¢ false ¢ :end
H[27] :if 1
L[28] true
B[29] :else
L[30] false
L[31] :end
™|

Figure 7: Highlight the :IF/:END control structure statements on lines 10 - 23

Page | 12

foo;ccc;ddd;[0i0

p move caret and/or selection through this function to

A see matching parens, brackets, quotes, or user or system
A names highlighted

a((b(cce ¢ bla))

g () [1 '' Odo parens and names in quotes or comments are
A not highlighted
cce (() [1 OCYLET "CYLT'))
ddd ccc e [ie OIO0 [OiQ OIe OSYS OSyS Os¥Ys
:if d
cce ddd ¢
:sellect d
:case 1
cce
:case 2
ddd
:else
cce
end
ccc ddd d
:aelse
ddd cce b
end
ccc ddd DDD a [JIO [Osvys
foo
:if 1 ¢ true ¢ :else ¢ false ¢ :end
=if 1
true
:aelse
false
end

Figure 8: Highlight the :SELECT/:END control structure statements on lines 12 - 19

Page | 13

foo;ccc;ddd;[0i0

A move caret and/or selection through this function to

A see matching parens, brackets, quotes, or user or system
A names highlighted

a((b(ccec ¢ b)a))

g () ['" Oio parens and names in quotes or comments are
A not highlighted
ece. [& () B} CXCYEY “"CXER"))
ddd ccc e [io OIO [Oi0 OIo OsSYS OSyS OsYs
:if d
ccc ddd
:galect
:case 1
ccce
:case 2
ddd
:alse
ccce
:and
cce ddd d
:alse
ddd ¢cc b
:and
ccc ddd DDD a [OI0 Osvys
foo
:if 1 ¢ true ¢ :else ¢ false ¢ :and
=if 1
trus
:alse
false
:and

Figure 9: Highlight []IO system variable

Page | 14

Updated APL System Colors Dialog

Match Hilite - the (name of the color to control) syntax coloring choice for how syntax pairing is

AP122000

Rapid Application Development

highlighted. The default is blue on grey.

APL System Colors

)

Elements to Color

Color Sample

General Elements

;] I kd atch Hilike

Collapzed Region
Ewecution Hilite
Function Session

Match Hilite

Murmeric Sezszion
Seszion [nput
Sezzion Dutput
Yector Session

% |se Specified
{ Lze Session

B ackaround Caloring;

Background

Text

Drefault

Apply

Syntax Coloring
¥ InFunctions

[T InSession

1]8

Cancel

Help

Figure 10: Match Hilite color settings

Page | 15

AP122000

Rapid Application Development

New support for collapsing & expanding of comment and control
structure elements in the function editor

Tools Options Window Help

=

Hriii f Examplez of ocontrel structures on diamondized lines |.x|
[21 2] =
[31 A This normal :IF :ELSE :END region ocgan be cgollapsed in twe I:I
[4] A stages

Hisi :IF ocond

L[5] TruseS8tmt

Hi71 :ELEE

I:[a] FalssStmt
[9] :END
[10]

[11] A The next 4 :IF blooks ocan be ocollapsed
Hi12] :REGION

[13]

[14] & This ocan bs ocollapasd
?[15] :IF cond ¢ TrusStmt ¢ :EZND

[16]

HI[17] & Thiz ocannot bs ocllapsed besoauss :END isn't last statsmsnt
[1181 & on lins
BEr131 :IF cond ¢ Trus8tmt ¢ :END ¢ LastStmt

| (201
Hiz11 A This ocannot be collapsed because :IF izn't first statement
| [22 A en line
[23] Firet8tmt ¢ :IF cond ¢ TrueS8tmt ¢ :END
[24]
[25] & This can be collapsed
Hrizs :IF cond ¢ TrueStmt ¢ :ELSE ¢ FalseStmt ¢ :END

Hriz71 A t+ The :ELSBE abowve iz not flagged as an error abowve; but
| [28] A it i=s flagged below!

[301] :ENDREGION

BHisz1 A The :IF can be ocollapsesd but the :ELSE ocannot because its
[33] & :END i= not first =ztatement on lins

BEll24] :IF cond ¢ TrusStmt

BEll25] :ELSE ¢ FalssBtmt ¢ :END

HI138]1 & * Bubordinate oclausss must have their end at start of a new

[37] & lins in ordser to bs oollapsad

[381
BHi[39] & * We maks an suosption if ths subordinats oclauss iz on i
| [40] =& the s=ams lins a= the parsnt olauss, a= =zsen on lins [20]

[41]

H[42] & Thiz caznnot be cellapsed because the :IF stateoment isn't
| [43] & first statement on line

| [44] Firet8tmt ¢ :IF gond ¢ TrueSimt i
| [451 :END
[48]

Hra71 A The :IF ocannct be collapsed becauss the :END statemsnt isn't
I_[IJE] A last statement on line
Hi4e2] :IF cond

[1501 TrusStmt
His1] :ELSE
BHisz21 A The :ELBSBE ocan bs oolleapsed swen though :IF that oconteins
[53] A it ocanncot
[54] FalssS8tmt
[55] :END ¢ LastStmt

Pl [[[4

o [R—

P—
Figure 11: Example of expanded code

Page | 16

AP122000

Rapid Application Development

The :REGION and :ENDREGION keywords defines the bounds of collapsible regions. The :REGION keyword can
have an argument which is free text that is not executed. It is simply used as a label for the region both when the
region is expanded and collapsed.

A new column of "region icons" has been added between the Function Line Markers ("gutter") column (in the
Preference dialog) where breakpoints can be set, and the function line number column. This appears in the red
rectangle in the figure below. The icons in the region column display a [-] for expanded region that can be
collapsed or a [+] for collapsed regions that can be expanded. Clicking on these icons toggles the
expanded/collapsed state of the region.

r@ APL+Win - [Test <F>] e |
f File Edit View Objects Walk Tools Options Window Help —||&| =
BEE S DEEE &EaX 9 B @] 44 2 Te

0] Test -
(1] lh This function contains several collapsable regions M
1 [2] A Starting with this multi-line comment
LI3] A That can be collapsed into a single line

4]

2(5] :if cond

6] A This is the true case
LL7] TrueCase

28] relse

| 9] A This is the false case
L[10] FalseCase

L{11] :endif

12] i

Ready 1 0 UNI

Fig. 12: New “gutter” region with expanded/collapsed icons

Allow most control block structures such as :IF :ELSEIF :ELSE :ENDIF, :SELECT :CASE :CASE :ELSE :ENDSELECT, etc. to
be collapsible.

Some complex structures such as :IF :ELSEIF ... :ELSE :ENDIF have multiple segments and the topmost statement
(the :IF statement) can toggle partial collapse of just the top section of the block (up to the first :ELSEIF or :ELSE) or
of the whole block all the way to the :ENDIF. This requires a third icon state which looks like [=] indicating partially
collapsed state.

In addition to the icon to the left of the numbers column, collapsed regions also get painted with an ellipsis "..."
enclosed in a box drawn at the end of the first line of the collapsed region.

Allow comment blocks containing more than one comment line to be collapsed.

Modify function definition in workspace so that collapsed state can be saved between edit sessions. Region state
changes are automatically stored into the workspace without saving the function, if the function has not changed

Page | 17

AP122000

Rapid Application Development

since it was opened or last saved. But region state changes in modified functions are not saved into the workspace
until (and unless) the modifications are saved. Region state changes are NOT traced in the undo/redo buffers.

Updated APL System Colors Dialog

Collapsed Region — the syntax coloring choices for how collapsed regions and their ellipsis block is
displayed. These are currently colored the same as local variable names.

APL System Colors ﬁ

Elernents ta Colar Colar Sample

IGeneraIEIements ;_l I Callapzed Region

l Collapsed Region B ackaround Caloring;

g : %" |ze Specified
Function Seszsion
Line Murmbers £ Use Session
t atzh Hilite
b atri Sessin:nr_l Background
Mureric Sezsion
Seszion [nput
Sezzion Dutput Text
Yector Session
Drefault
Apply

- Syntax Caolaring——
¥ InFunctions

[T InSession

1]8

Cancel

Help

Figure 13: Collapsed Region color settings

Page | 18

AP122000

Rapid Application Development

[|DEF system function supports nested vector of character vectors or
scalars

The [|DEF system function has been improved to support an argument that is a nested vector of
character vectors or scalars. This is identical to the enhancement to [JFX in v15.0. E.g.,

[DEF 'res<«left MyFn right' 'res«left + right' 'res<«res,left * right'
MyFn

is equivalent to the line below in prior versions of APL+Win
ODEF =2[2] 'res«left Foo right' 'res«left + right' 'res«res,left * right'

New support for Hexadecimal and floating point numbers

Add support for directly entering hexadecimal integer and floating point numbers in APL+Win.

A hexadecimal integer is prefixed by Ox or 0X followed by 1-16 hex digits (0,1,2,3,4,5,6,7,8,9,A,B8,C,D,E,F). For
example, 0x00100000 is equal to 1048576. Hex numbers with 1-8 digits are ALWAYS integers in APL. They do not
overflow into floating point numbers when the high order bit is set. For example, the hex number OxFFFFFFFF is -1
rather than 4294967295. A hexadecimal float can be prefixed by Ox or OX followed by 9-16 hex digits or by a Or or
OR prefix followed by 1-16 hex digits.

Hex integers can also be specified in binary notation with a Ob or OB prefix followed by 1-64 binary digits (0 or 1).
For example, 0b1111 is 15. In the case of a Or or OR prefix, the following 1-16 hex digits are the hex representation
of the bit pattern for an IEEE 64-bit float. For example, Or3FFO000000000000 = 1.0. If less than 16 digits are
specified, the value is padded with trailing zeros to 16 hex digits. Thus Or3FF is the same as Or3FFO000000000000.

A relatively easy to read summary of IEEE-754 floating point specification can be found here:
http://en.wikipedia.org/wiki/IEEE_754-1985. The formal IEEE-specification can be found here:
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4610935&filter%3DAND%28p Publication Number%3
A4610933%29

Here are some other examples:

0x00 = 0

0x01 = 1

OxFF = 255
OxFFFFFFFF = -1
OxOFFFFFFFF =4294967295
0b1100 = 12
0b11111111 = 255
0b10101010 = 170

Page | 19

http://en.wikipedia.org/wiki/IEEE_754-1985
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4610935&filter%3DAND%28p_Publication_Number%3A4610933%29
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4610935&filter%3DAND%28p_Publication_Number%3A4610933%29

AP12000

Rapid Application Development

0r3FFO000000000000 = 1.0
0r4000000000000000 = 2.0
0rC000000000000000= -2.0
0r4010000000000000 = 4.0
O0r3FEO000000000000 = 0.5
0r4 = 2.0 Note that Or4 = 0r4000000000000000
orC = -2.0 Note that OrC = 0rC000000000000000

NOTE: In order for hex numbers to be accepted in any of these contexts they must be enabled via the
[Experimental]EnableHex property. Possible values are O=disabled; 1=allow 0X and 0B; 2=allow OR; 3=allow 0X,
0B, or OR notation. The defaultis 1. The intention is to eventually eliminate the EnableHex property and have
hex value always enabled. It is only used because this is an experimental feature at this time.

Be careful to avoid specifying bit patterns using "R" notation that represent infinities or NaNs. APL+Win does not
expect to encounter these and can exhibit unexpected behaviors. For example, you can hang APL+Win by trying to
display the value of Or7FF (positive infinity). This is the reason that OR notation is not enabled by default. So be
especially careful to avoid generating them.

Example:
(t645 [dr 82 [Odr 110619 ~2147483648)
Could be more directly entered in hex like this (noting the Ox prefix):
(té45 [Jdr 0x0001B0O1B 0x80000000)

Or even more directly as a floating point 64-bit hex like this (noting the Or prefix):

0r8000000000018B018B
OVI 'OxFF'
1
OFI 'OxFF'
255
(DR 'OxA'
82
(DR O0xA
323

Page | 20

	APL+Win v15.0.08 Beta
	Bug Fixes
	Update to APL System Colors Dialog

	APL+Win v15.0.06 Beta
	Bug Fixes
	Update to :ENDREGION keyword
	Update to Find/Replace Dialogs
	Update to APL System Colors Dialog

	APL+Win v15.0.04 Beta
	New System Function: ⎕CN - Character Nested-Array The ⎕CN system function is used to normalize any character argument into a nested vector of character arrays. Syntax: res ← ⎕CN array Argument: array is an array of characters arrays or scalars. R...
	New support for syntax color highlighting of matching elements This enhancement adds support for syntax color highlighting of matching pairs (opening and closing) of the punctuation marks including single quotes, double quotes, parenthesis, and index...
	Updated APL System Colors Dialog
	New support for collapsing & expanding of comment and control structure elements in the function editor
	Updated APL System Colors Dialog
	⎕DEF system function supports nested vector of character vectors or scalars The ⎕DEF system function has been improved to support an argument that is a nested vector of character vectors or scalars. This is identical to the enhancement to ⎕FX in v1...
	New support for Hexadecimal and floating point numbers Add support for directly entering hexadecimal integer and floating point numbers in APL+Win.

