

 Page | 1

APL+Win Version 14.2.10 Beta

Copyright (c) 2015 APLNow LLC.

All Rights Reserved

Feb 13, 2015

This document contains version history information for this APL+Win 14.2.10 Beta. Please report any

problems or comments pertaining to this beta to support@apl2000.com.

Note: This beta will expire on or about Feb 28, 2015.

APL+Win 14.2.10

Bug Fix

1. In the 14.2.09 beta, ⎕CV did not correctly apply a left argument that was any arbitrary vector of

characters.

2. The 14.2.09 beta crashed when loading some older workspaces storing ⎕cself data.

APL+Win 14.2.09

Bug Fix

3. In the 14.2.06 Beta, APL+Win crashed when executing the following Win32 functions:

EnumFontFamiliesEx, EnumWindows, GetOpenFileName and SHBrowseForFolder.

4. APL+Win could crash or corrupt the workspace if APL+Win performed a workspace compaction

while parsing assignment statements.

Enhancements

1. Update: ⎕RL - Random Link

The ⎕RL system function has been updated to support several new pseudo-random number

generation algorithms to complement the existing pseudo-random number generation algorithm,

Multiplicative Linear Congruential Multiplier. They are:

 Historical Multiplicative Linear Congruential Multiplier

 Extended Historical Multiplicative Linear Congruential Multiplier

mailto:support@apl2000.com

 Page | 2

 Mersenne Twister (32-bit)

 Subtract with Carry (24-bit)

IMPORTANT: This enhancement has resulted in the removal of the ⎕RNG system function and

⎕RLX system variable previously introduced in version 14.2.06.

rl Random Link

Purpose:

This workspace-related system variable sets or gets information about the type of the pseudo-
random number generation algorithm used by the system, the current state of that pseudo-
random number generator, and the optional discard value used by the pseudo-random number
generator in advancing its internal state.

Syntax: result

  an integer scalar or a vector of two or three elements

Domain:

The result and the range of permissible values of  depend on the pseudo-random number
generation algorithm in use by the system.

The default value of  in a clear workspace is scalar 7*5. This indicates that the historical
pseudo-random number generation algorithm, Multiplicative Linear Congruential with multiplier
16807 (7*5) will be used. Setting  to any scalar positive integer will cause the system to use
the historical algorithm. Setting  to a scalar positive integer will modify the internal state of the
historical algorithm. This definition of  preserves the historical syntax and features of .

Several additional pseudo-random number generation algorithms may be used by the system in
which case the result and the range of pe
(possibly nested) vector. Additional pseudo-random number algorithms may be implemented in a
future version of APL+Win.

 Page | 3

















Historical

Multiplicative

Linear Congruential

Multiplier 16807

positive scalar integer

indicating the internal
state of the historical
algorithm

n/a in this case

is a scalar

n/a in this case 

is a scalar

Extended Historical

Multiplicative

Linear Congruential

Multiplier 16807

zero internal state optional positive

integer discard
value

Mersenne Twister
19937 (32-bit)

 internal state optional positive
integer discard
value

Subtract with Carry

(24-bit)
 internal state optional positive

integer discard
value

Multiplicative Linear

Congruential

Multiplier 48271

 internal state optional positive

integer discard
value

For pseudo-random number generation algorithms other than the non-extended historical
algorithm, the value of  must be a two or three element vector. The first element is a non-
positive integer which indicates the pseudo-random number generation algorithm to be used by
the system.

The second element of  is used to set or restore the internal state of the pseudo-random

number generation algorithm. If the second element of  is the default internal state will
be used by the algorithm. The second element of  can be a scalar or homogeneous vector,
containing integer, floating point, character, Boolean, or a UCS character vector containing the
representation of the internal state along with other information pertaining to the pseudo-
random number generator. For the extended historical algorithm the internal state is
represented by a scalar.

The default internal state is described in the following table.

 Page | 4

Algorithm Default Internal State

Historical Multiplicative

Linear Congruential

Multiplier 16807

16807

Extended Historical Multiplicative

Linear Congruential

Multiplier 16807

16807

Mersenne Twister 19937

(32-bit)

obtained by capturing the second element of 

Subtract with Carry (24-bit) obtained by capturing the second element of 

Multiplicative Linear Congruential

Multiplier 48271

48271

In some cases the internal state of the algorithm is returned in the second element of as a

vector of Unicode characters because the information necessary to represent the native-C++
internal state of the algorithm cannot be represented in the form of an APL+Win data type. In
this case, the first four elements of the vector comprise an MD5 checksum. The fifth element of
the vector contains the algorithm type code. The sixth element of the vector is the discard value.
The seventh element of the vector contains the size of the algorithm state in bytes. The eighth
and subsequent elements comprise the native-C++ internal state of the algorithm. The
checksum is based on the algorithm type, the discard value, the state size and the state data and
is used to validate the data. This UCS-format internal state can be captured by the APL+Win
programmer and subsequently used to set the internal state of the algorithm.

The third element of is an optional non-negative integer scalar in the range

[, which is the specified number of pseudo-random numbers to be discarded
when the selected algorithm is first used after it has been selected. The default value of the
discard value is zero of it is not otherwise specified. For certain pseudo-random number
generation algorithms the discard value is useful to eliminate the initial values generated which,
by design, may not be reasonably distributed. The maximum allowable optional discard value
can be specified by adding the MaxDiscard entry in the [RNG] section of the APLW.INI file,
which by default, this maximum value is set to 

Effect:

The system uses the value of  to select the type of pseudo-random number generator, set the
internal state of that generator, and optionally discard initial generated values for computing
the result of the APL+Win roll (monadic ) and deal (dyadic ) functions.

The value of  is preserved when an APL+Win workspace is saved.

 Page | 5

As the system generates pseudo-random numbers, the internal state of the generation algorithm

is updated in . The captured value of  may be used to set the value of  in order to
reproduce the same sequence of pseudo-random numbers.

Examples:



By default the system uses Algorithm .



Generate three random numbers from  to :





When the historical algorithm is selected,  may only be set to a non-negative integer

in the range [



Select Algorithm  and specify the use of the default state:


Generate three random numbers from  to :



Select Algorithm , set the use of the default state and specify an initial discard value:





Note: In the example above, if the discard value is  instead of , the internal state returned

would have been an integer scalar. In order to preserve the discard value, the  returns a
vector.

Generate three random numbers from  to :



Note: In the example above, the numbers were generated after the internal state of the

generator has been advanced three times.

Select the Mersenne Twister generator, specify the use of the default state and no optional
discard value and capture the value of :





Note: In the example above the optional discard value has been set to zero and  returns a

three-element vector.

The UCS character vector above contains:

 Page | 6






Note: The first four elements of the data vector as a whole contains the checksum; the fifth
element contains the algorithm type (); the sixth element contains the discard value (; the
seventh element contains the state size (); the eighth element () marks the beginning
of the state data.

Generate three random numbers from  to :





Reset the state of the Mersenne Twister generator:


Generate three random numbers from  to :





Select Algorithm  and specify the initial internal state:




Select Algorithm  and specify the initial internal state:




Note: In the example above, character ‘a’ is used by a seed sequence object to set the internal

state of the historical algorithm.

Select Algorithm  and specify the initial internal state:


Note: In the example above, the value of  (an integer vector) is used by a seed sequence
object to set the internal state of algorithm.

Select Algorithm  and specify the initial internal state:


Note: In the example above, the value of  (a character vector containing a Global Unique

Identifier) is used by a seed sequence object to set the initial internal state of the algorithm.

Select Algorithm  and specify the initial internal state:




Note: In the example above, the floating point vector is used by a seed sequence object to set the

initial internal state of the algorithm.

Select Algorithm  and specify the initial internal state:


 Page | 7




Note: In the example above, the Boolean vector is used by a seed sequence object to set the

internal state of the algorithm.

Select Algorithm  and specify the initial internal state:




Note: In the example above, the floating point value is used by a seed sequence object to set the

internal state of the algorithm.

Pseudo-Random Number Algorithms
The APL+Win roll (monadic , e.g. ) and deal (dyadic , e.g. ) functions employ pseudo-

random number generation algorithms so that programmers can simulate random events or create

cryptographic keys. These algorithms are fully determined by their seed value so that the sequence

generated can be repeated by using the same seed value. The repeatable property of these algorithms is

useful for testing applications involving the roll or deal functions, however this repeatable property is

what makes them pseudo-random. The period of a pseudo-random number algorithm is the maximum

length, among all possible seed values, of a sequence of values generated by the algorithm which is non-

repeating.

Prior to APL+Win v15, the pseudo-random number algorithm inherently supported was the ‘linear

congruential’ algorithm with linear constant term set to zero and initial multiplier set to 7*5. Starting

with APL+Win v15, additional pseudo-random number algorithms are inherently supported and may be

selected by the APL+Win programmer, with the potential for additional algorithms to be added in the

future.

Pseudo-random number generator algorithms are analyzed on the following bases:

 Period ‘length’ for specific seed values

 Correlation among successively generated values

 Distribution of generated values among the possible values

 Mathematical ‘complexity’ resulting in processing time variation

The underlying pseudo-random number generator algorithm is used to obtain a pseudo-random number

in a specified range. This value is mapped to the integer range space of the APL+Win roll function. For

example the range space of the pseudo-random number generator may be values in [0, 1], but the range

space of the APL+Win roll function is programmer determined, e.g. For  the range space is [1, 10] in

index origin 1.

A pseudo-random number generator seed may itself be generated by a seeding generator. This technique

is deemed to ‘inject entropy’ into the resulting sequence of pseudo random numbers, e.g. Seed Sequence.

Refer to http://www.cplusplus.com/reference/random/seed_seq/. For detailed information about the

specification of the Seed Sequence utility, refer to Section 26.5.7.1 of the working draft of the Standard for

Programming Language C++. This specification is available at http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2014/n4296.pdf.

http://www.cplusplus.com/reference/random/seed_seq/

 Page | 8

Mersenne Twister
Mersenne Twister algorithm provides fast generation of high-quality pseudorandom integers. The

specific variant of Mersenne Twister implemented in APL+Win is ‘MT19937’ as provided by the Microsoft

operating system. It is based on the Mersenne prime 219937-1 and produces a sequence of 32-bit numbers

with a state size of 19937 bits. Its predefined parameters are:

 32: word size

 624: state size

 397: shift size

 31: mask bits

 0x9908b0df: xor mask

 11:tempering shift parameter u

 0xffffffff: tempering bitmask parameter d

 7: tempering shift parameter s

 0x9d2c5680: tempering bitmask parameter b

 15: tempering shift parameter t

 0xefc60000: tempering bitmask parameter c

 18: tempering shift parameter l

 1812433253: initialization multiplier

Range of values generated: [0, 232 – 1]

Default Seed: 5489

More information:

 http://en.wikipedia.org/wiki/Mersenne_twister

 http://www.cplusplus.com/reference/random/mt19937

Linear Congruential with Initial Multiplier 48271
Linear congruential algorithm yields a sequence of numbers computed with a discontinuous piecewise

linear equation. The pre-existing version of this algorithm in APL+Win uses zero as the linear constant

term. The specific variant of Linear Congruential with Initial Multiplier 48271 implemented in APL+Win

is ‘MINSTD_RAND’ as provided by the Microsoft operating system. Its predefined parameters are:

 48271: the multiplier

 0: the increment

 2147483647:the modulus

Range of values generated: [Min: 1, (231 – 1) – 1]]

Default Seed: 1

Initial State: 48271

More information:

 http://en.wikipedia.org/wiki/Linear_congruential_generator

 http://www.cplusplus.com/reference/random/minstd_rand.

http://en.wikipedia.org/wiki/Mersenne_twister
http://www.cplusplus.com/reference/random/mt19937
http://en.wikipedia.org/wiki/Linear_congruential_generator
http://www.cplusplus.com/reference/random/minstd_rand

 Page | 9

Subtract with Carry
Subtract with carry is a lagged Fibonacci algorithm with a state sequence of integer elements, plus one

carry value. This algorithm is a generalization of the L'Ecuyer RNG (University of Montreal). The specific

version of Subtract with Carry implemented in APL+Win, as provided by the Microsoft operating system,

is ‘RANLUX24_BASE’ which produces 24-bit numbers. Its predefined parameters are

 24: number of bit in each word in the state sequence

 10: number of elements between advances

 24: value that determines the degree of recurrence in the generated series

Range of values generated: [0, 224 – 1]

Default Seed: 19780503

More information:

 http://en.wikipedia.org/wiki/Subtract_with_carry

http://www.cplusplus.com/reference/random/ranlux24_base

2. Update: ⎕FX system function

The ⎕FX system function has been improved to allow the argument to be a nested vector of

character vectors (or scalars), rather than requiring it to be a matrix. For example, the line below in

version 15

 ⎕FX 'res←left MyFn right' 'res←left + right' 'res←res,left * right'

is equivalent to the line below in prior versions of APL+Win

 ⎕FX ⊃[2] 'res←left Foo right' 'res←left + right' 'res←res,left * right'

In addition to supporting a vector of character vectors, the argument can actually be a nested array

of any rank containing sub-items that can themselves be character arrays of any rank, or even

nested sub-items together in the same argument.

⎕FX has also been extended to allow embedded ⎕TCNLs in the argument (at any level of

nesting) to represent new lines in the function. It also removes trailing blanks from the ends of

lines.

3. New: ⎕CM - Character Matrix

The new Character Matrix system function, ⎕CM, can be used to normalize a character argument

into a character matrix result.

Like the ⎕FX system function, ⎕CM accepts as its argument a nested or heterogeneous array of

any rank, gluing all items together into a character matrix. The overall array and each item and

http://en.wikipedia.org/wiki/Subtract_with_carry
http://www.cplusplus.com/reference/random/ranlux24_base

 Page | 10

subitem in the array is processed in ravel order.

The overall array and each item and subitem in the array is processed in ravel order. But this is not

to say it is the same as ⎕ENLIST. Each character matrix or higher rank item in the argument

(including sub-items) gets an implicit newline for each row. Each nested sub-item gets at least one

new row in the result also (and if it contains nested sub-items or character matrix or higher rank

items, those also get newlines in the result).

In addition to allowing ⎕TCNL as a line separator in the argument, ⎕CM (as well as ⎕FX and ⎕CV)

also recognize ⎕TCLF or the two-character sequences (⎕TCNL,⎕TCLF) and (⎕TCLF,⎕TCNL) to

represent ONE newline in the result. This means that the string "abc",⎕TCNL,⎕TCNL,"def" gives

three lines in the result (one of them blank between "abc" and "def"). But the similar string

"abc",⎕TCNL,⎕TCLF,"def" will only produce two lines in the result because the ⎕TCNL,⎕TCLF

sequence is considered a single newline in argument. These rules make it easier to handle text files

that may have originated in Windows, Linux, Unix, OSX, etc, with equal ease.

For example:

 ⎕CM 'abc' (2 2⍴'DEFG') ('hello',⎕tcnl,'world!')

abc

DE

FG

hello

world!

 ⍴⎕CM 'abc' (2 2⍴'DEFG') ('hi',⎕tcnl,'there')

5 5

Or even more complicated, we have the following:

 ⎕CM 3 2 ⍴ 'abc' (2 2⍴'DEFG') ('hello',⎕tcnl,'world!')

abc

DE

FG

hello

world!

abc

DE

FG

hello

world!

 ⍴⎕CM 3 2 ⍴ 'abc' (2 2⍴'DEFG') ('hello',⎕tcnl,'world!')

 Page | 11

10 6

Note 1: This is not the same as applying the THORN (⍕) primitive to the argument. For example,

thorn of the same array would produce the following result:

 ⍕ 3 2 ⍴ 'abc' (2 2⍴'DEFG') ('hello',⎕tcnl,'world!')

 abc DE

 FG

 hello

world! abc

 DE hello

world!

 FG

Note 2: ⎕CM will remove trailing blanks from lines.

4. New: ⎕CV - Character Vector

The ⎕CV system function can be used to normalize a character vector argument into a character

vector result. By default, the character vector result is ⎕TCNL delimited. But available is an

optional left argument that can specify a different line delimiter.

Syntax: res ← {separator} ⎕CV array

Arguments:

{separator} is the optional left argument to specify the line separator sequence. The default ⎕TCNL

line separator can be overridden by specifying a left argument that is a character scalar or non-

empty character vector.

For example, comma and semi-colon. The separator is inserted between each line of output, but

not to the beginning or end of the result.

array is any array of characters arrays or scalars.

Result:

The result is a character vector.

Example:

 ⎕CV 'ONE' 'TWO' 'THREE'

ONE

TWO

THREE

 ⎕TCHT ⎕CV 'ONE' 'TWO' 'THREE'

 Page | 12

ONE TWO THREE

 ':' ⎕CV 'ONE' 'TWO' 'THREE'

ONE:TWO:THREE

 ':' ⎕TCHT ⎕CV 'ONE' 'TWO' 'THREE'

ONE: TWO: THREE

Note: ⎕CV will remove trailing blanks from lines.

5. New: ⎕CRLF - Newline + Line feed

The ⎕CRLF system variable returns a two element vector consisting of (⎕TCNL,⎕TCLF) and is a

convenient left argment to ⎕CV for producing standard Windows delimited output. In C/C++/C#

this is the "\r\n" sequence.

6. New: ⎕guid - Global Unique Identifier Generator

The ⎕guid system function is used to obtain a character vector containing a new Global Unique

Identifier (GUID). The result may be used as a persistent unique identifier with a high degree of

certainty. For more information see http://en.wikipedia.org/wiki/Globally_unique_identifier.

Syntax: result ← ⎕guid

Result:

result is a character vector, generated by the Windows operating system, which is enclosed in 'curly

braces'. The representation is of a 128-bit integer in the format of 32 hexadecimal digits grouped

according to convention.

Example:

)clear

CLEAR WS

 ⎕guid

{A3EE881B-7AB4-4B38-9237-A2846E43EF9A}

7. Update: aplw.exe.manifest and aplwr.exe.manifest

The updated aplw.exe.manifest and aplwr.exe.manifest files enable the GetVersionEx Windows

function to now correctly detect and report the version number as 6.3 for the Windows 8.1 and

Windows Server 2012 R2 operating systems.

 Page | 13

APL+Win 14.2.08

BUG FIX

A virtual memory allocation failure error in APL+Win 10.0 and higher could prevent APL+Win from

starting with a workspace size greater than 2 GB.

APL+Win 14.2.07

BUG FIX

In the 14.2.06 Beta, APL+Win crashed when executing the following Win32 functions:

EnumFontFamiliesEx, EnumWindows, GetOpenFileName and SHBrowseForFolder.

APL+Win 14.2.06

Enhancements

1. Colon primitive (:)

Description:

A colon prefix followed by a space (colon-space) at the beginning of a statement in a user defined

function will suppress the output on any line of execution including a :THEN expression in Inline Control

Structures.

2. Sink primitive (←)

Description:

Suppress the output from any line of execution in immediate execution (session) and user defined

function when executed monadically.

Syntax:

 ← expression

where expression is any valid APL expression that returns a value.

Example:

 Page | 14

 ← 2 3⍴⍳6

⍝ no output displayed

3. ⎕rng - Random Number Generator (obsoleted as of v14.2.09)

Purpose:

This workspace-related system variable sets the type of the pseudo-random number generator to be

used by the system.

Syntax: result ← ⎕rng

 ⎕rng ← number

Domain:

Integer in [0,3]. In a clear workspace, the default value is 0 which corresponds to the historical method

used by APL+Win.

Effect:

The system uses the value of ⎕rng to select the desired random number generators to be used by the

roll (monadic ?) and deal (dyadic ?) primitive functions. Changing the value of ⎕rng to a value different

than its previous value will cause the system to reset ⎕rl and ⎕rlx to their default values.

4. ⎕rlx - Random Link Extended (obsoleted as of v14.2.09)

Purpose:

This workspace-related system variable sets or gets the discard value (or advance internal state), seed

value (or random link), and additional optional value(s) used by a seed sequence object in seeding the

RNGs. It is applicable only when ⎕rng > 0.

Syntax: result ← ⎕rlx

 ⎕rlx ← vector of numbers with a minimum of two elements

5. The APLW.WS ActiveX Server object now supports being instantiated by a 32-bit non-APL+Win

client application.

Note: that this enhancement facilitated renaming the XStart method to XInit.

Observe the following behaviors when starting the new APLW.WS server from a non-APL+Win client:

a. The default Workspace (if no Workspace specified in XInit or XInit invoked implicitly) will be "" (no

default workspace).

 Page | 15

b. The default Argument (if no Argument specified in XInit or XInit invoked implicitly) will be "".

c. The default Directory (if no Directory specified in XInit or XInit invoked implicitly) will be the current

directory where the aplwCo.dll.

d. The default ExePath (if no ExePath specified in XInit or XInit invoked implicitly) will be based on the

name of the aplwCo.dll.

BUG FIX

The display or formatting of a deeply nested array could cause APL+Win to crash unexpectedly instead

of reporting a LIMIT ERROR. This was found to occur when the product of the elements in the number

of rows and cols in the nested array exceeded the maximum number of elements supported in a 32-bit

signed integer.

	rl Random Link
	Pseudo-Random Number Algorithms
	Mersenne Twister
	Linear Congruential with Initial Multiplier 48271
	Subtract with Carry

