

APL+Win v10

New System Features
Robustness, Control Flow, Error Handling, and Debugging

 APL+Win v10 - New System Features ii

Copyright

While every attempt has been made to ensure that the

information in this document is accurate and
complete, some typographical errors or technical
inaccuracies may exist. APLNow, LLC does not accept
responsibility for any kind of loss resulting from the
use of information contained in this document.

This page shows the publication date. The information
contained in this document is subject to change
without notice. Any improvements or changes to either
the product or the document will be documented in
subsequent editions.

This software/documentation contains proprietary

information of APLNow LLC. All rights are reserved.
Reverse engineering of this software is prohibited. No
part of this software/documentation may be copied,
photocopied, reproduced, stored in a retrieval system,
transmitted in any form or by any means, or translated
into another language without the prior written
consent of APLNow LLC.

U.S. Government Restricted Rights. The software and

accompanying materials are provided with Restricted
Rights. Use, duplication for disclosure by the
Government is subject to the restrictions in
subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-

7013, or subparagraphs (c) (1) and (2) of the

Commercial Computer Software - Restricted Rights at
48CFR52.227-19, as applicable. The Contractor is

APLNow LLC, One Research Court, Suite 325,

Rockville, MD 20850.

APL+Win 10

This edition published 2010.

Copyright © 2005-2010 APLNow LLC.

Portions copyright © Microsoft Corporation, One
Microsoft Way, Redmond, Washington 98052-6399

USA. All rights reserved.

APL2000 and APL+Win are registered trademarks of
APLNow LLC in the United States and/or other

countries. APL*PLUS is a registered trademark of

Manugistics, Inc. Microsoft, Windows, Windows 98,

Windows 2000, Windows NT, Windows XP, Windows

Vista, Windows 7 and Excel are trademarks or
registered trademarks of Microsoft Corporation. All
other brand names and products are trademarks or
registered trademarks of their respective companies.

3 APL+Win v10 - New System Features

APL+Win v10.0 is the most substantial release of the system in several years. It is filled with significant

enhancements including much faster performance, larger workspace size, and many new features oriented

toward making programming more productive and applications more reliable.

What’s New?

 System speed and memory capacity have increased dramatically. This is the fastest APL+Win

system ever! Some applications now run in as little as half the time they required on the previous

version. Maximum workspace size has grown from about 1.6 GB previously to 3.6 GB (on Win64

systems) and 2.6 GB (onWin32 systems with 4GT enabled).

 Support for bigger sized arrays in the workspace. In the previous version, the array was just

limited to 214,748,352 elements. In APL+Win v10.0, the array may be as big as 2,147,483,647

elements (10x bigger) or up to 2 GB in size, whichever is smaller.

 Good programming practices are encouraged via separate debug and release execution modes.

Debug mode can be used during development whenever correctness testing is critical, whereas

release mode can be used for application deployment whenever speed is critical. The ,

, , and statements execute only during debug mode. When

release mode is enabled, inner-statement flow is optimized to completely avoid execution of

debug statements, making them logically invisible with zero execution cost as if they were

comments.

 In addition to debug mode, a rudimentary testing infrastructure facilitates semi-automatic

self-testing. Tests coded in … blocks are logically invisible during normal

execution. Test blocks may be defined directly inside the functions they test or elsewhere.

 The feature can capture execution history of up to 134 million statements with less

than 2% performance penalty. This makes it possible to explore control flow errors without

modifying the code or slowing it down enough to make bug mutation likely.

 A crash recovery mechanism supports automatic application restart in the event of failure. It

creates a crash log file containing information useful for debugging and a MiniDump file, which

APL2000 can execute with a post-mortem debugger, to help diagnose and fix bugs in the

APL+Win system or determine if the crash is happening in a third party component.

 Most debugging and tracing features can be re-enabled after application release via configuration

file settings, manually edited by the client or via debugging options on the application‟s menus.

This can help diagnose bugs that only occur at client sites and cannot be reproduced in the lab.

 Complex logical calculations can now be concisely coded via the experimental Inline Control

Sequences (ICS) feature using , , , , and keywords

embedded in expressions. They are evaluated progressively similar to the , , and operators

found in C, C++, C#, JavaScript, etc.

 The statement allows a result expression as an optional argument. When an argument

is coded, its value is returned as the function‟s result, shortcutting the normal two step process of

assigning a result variable and then returning. Without an argument, behaves normally.

 The , , and statements do conditional exit/continue

with a single statement rather than a three statement … sequence surrounding a

, , or statement. also allows an optional result

value argument.

 The statement has a new mechanism to pop errors that occur in called functions back to its

handling context regardless of the ambient setting. Its clause supports wildcard

pattern matching, which is more concise and efficient than . Its clause

defines an always-executed block of code, which runs no matter how the statement is

exited.

 The statement provides resume-on-next-line error handling, which is more convenient

in some cases than traditional … or error handling. It is similar to the

 APL+Win v10 - New System Features 4

effect of setting but without the problems doing so could create in called

functions.

 The statement supports a wildcard pattern matching clause, which uses the

same notation as , as an alternative form of and clauses. It also

supports a statement to flow from one case into the next without branching.

 The statement now supports multi-variable strand notation to the left of keyword.

 , , and functions to simplify testing of valence and

variable to explicitly indicate no value.

 The function is similar to except it throws the error in the context of the

calling function rather than exiting from the function before throwing it. This allows errors thrown

in a block to be handled locally rather than existing from the function.

 The function routes output to a debug log file separate from the APL session and/or writes

events to the Windows Event Log. The statement implicitly calls in debug mode.

 The debugger can now stop for errors at their point of origin and/or handling. This is useful in

general but especially for errors in statements, which were previously impossible to debug.

 Unicode clipboard support simplifies inter-user communication, documentation, creation of web

pages containing APL code, and helps promote APL in the non-APL community.

 The runtime system now loads development and runtime workspaces; workspaces saved with

either or .

 optimized to execute with less overhead.

 Tabs are now treated syntactically the same as blank spaces in APL code when not in quotes.

 New “Event Stop Settings” in Code Walker for improved debugging error handling code.

 The system command and the system function are used to execute statements that

are contained inside of the and blocks of functions.

 The statement provides a place to compute something before taking the next decision in

cascading decision statements (such as:AND/:OR extensions of :IF/:WHILE).

 The system function returns the Error Message part of (the first line up to but not

including the first).

 The system variable supports localization and assignment.

 and allow scope left arguments.

 Orphans are automatically removed from the workspace on all , and

operations.

 The [Config]VirtualCommitPrompt INI parameter controls what happens when virtual memory

cannot be committed.

 The keyboard shortcut for the Edit/Replace dialog was changed to Ctrl+H. This makes APL+Win

consistent with standard Windows Find/Replace key bindings and avoids the undesirable behavior

of Ctrl+H destroying the selection rather than bringing up the Replace dialog.

Why These Features?

Most features are aimed at providing tools to help developers build robust applications rapidly.

Developing applications rapidly is useless if they are unreliable. However, we have never given

developers tools to support programming and testing practices that help them build robustness into their

applications.

The goal of the debugging and testing features is to make it almost as easy to pay attention to

robustness as to forget about it. Validation logic that executes only in debug mode can be used liberally

without worrying about its impact on performance, since it can be disabled in the released system.

 APL+Win v10 - New System Features 5

Because validation code doesn‟t need to be removed to disable it and can be reactivated in the field,

developers can be more confident than ever in their ability to quickly diagnose and fix problems in

deployed applications.

The new testing tools are intended to support cyclic test-while-coding mythologies such as Extreme

Programming
1
 and other kinds of Agile Software Development. APL‟s flexibility in adapting to new

problems also increases the risk of breaking existing code. Testing to make sure code works correctly in a

new mode does not ensure the changes haven‟t broken it for use in some old mode. Unit testing helps

ensure the system as a whole and each of its components individually continue to fulfill the obligations

they were designed for, especially the subtle ones we may have forgotten about. It is a much better

approach to robustness than just “running the application for a while” after changing it.

The crash logging and MiniDump features were added to enable APL2000 to remotely diagnose and

fix system bugs more quickly than ever before. The execution trace logging and detailed SI state

information included in the log files should also help application developers to diagnose and fix their bugs

as well.

The application restart features and improvements to the error messages boxes seen by users allow

applications to behave more professionally and responsibly in the event of system failures. Restarted

application can offer the option to the user (or do it automatically if pre-authorized) to upload log and

MiniDump files to the application vendor for analysis and these can be forward to APL2000 for crash

analysis.

The remaining features such as inline control sequences and other flow control structure changes,

enhanced and simplified error handling, Unicode clipboard capabilities and filtered debugger stopping

modes are intended to increase programmer productivity and joy. The next section discusses these

features in detail.

New Features in Detail

Execution Speed Improvements

The execution speed improvements were achieved by critically examining all processes related to

the main APL+Win interpreter „loop‟ and modifying the applicable processes for maximum efficiency of

operation. The benefits of the execution speed improvements in APL+Win v10.0 will generally be

apparent without application system modification.

Some customers who have tested APL+Win v10.0 system report that their applications run in ½ the

time they took on previous versions. These users didn‟t see as much an improvement in I/O intensive

applications that spend time moving large amounts of data around on disk or across the internet.

Calculation-intensive applications that “crunch” a lot of data in APL, as well as applications with

extensive program logic, such as decision branching, iterative logic and control structures, generally run

much faster in APL+Win v10.0.

1
 Extreme Programming: http://en.wikipedia.org/wiki/Extreme_programming

http://en.wikipedia.org/wiki/Extreme_programming

 APL+Win v10 - New System Features 6

Enhanced Execution Speed Examples:

 Reduced interpreter overhead for control statements and tokens:

 APL+Win v10 - New System Features 7

 Improved execution speed with data “crunching”:

 APL+Win v10 - New System Features 8

 APL+Win v10 - New System Features 9

Application System Tuning To Select Workspace Size

The benefits of the increased maximum workspace size in APL+Win v10.0 may be maximized

with some optional „tuning‟ effort. Analyzing the workspace memory usage of an application system

and adjusting the new workspace size settings will help to achieve optimal performance of the

application system.

As workspace sizes increase it becomes more important to understand the huge impact workspace

memory management can have on overall performance of an application. In most applications, the

overhead of allocating, freeing, recycling, and reorganizing workspace memory can account for a greater

fraction of time than is spent on actually “crunching” numbers. While this is all handled automatically

“behind the curtains” for APL+Win applications, there are decisions developers can make and actions they

can take that have a dramatic impact on this aspect of performance, either positively or negatively.

A great deal of workspace memory management tuning is handled automatically and adaptively by

the APL+Win system as it “learns” how an application behaves and changes memory management

strategies accordingly. But there are hints that the developer can give to the system that enable it to make

fewer guesses and better decisions. Hence, it is possible for the astute developer to help improve

performance if they are given the necessary tools and insights and are motivated to spend a little extra time

to optimize their application with respect to workspace memory usage.

Performance tuning cannot be considered in a vacuum that looks only at how one instance of an

APL+Win application performs in isolation. Balance is important and well done applications need to be

considerate of other applications running at the same time on the same computer. Therefore, we will also

be discussing how to be a good neighbor to other applications. Even from a selfish perspective, when

running multiple instances of APL to work on different parts of a problem in parallel, being a good

neighbor to your own application instances can improve the overall throughput of the system.

The „interpreter tuning‟ (▯it) function gives the application system programmer the ability to

observe and precisely control APL+Win v10.0 memory usage in an application system. Using ▯it ”?”

discloses the following options:

AuditRefcounts Audit object reference counts (System Failure for problems)

AuditRefcountsC Audit object reference counts (cleans up problems)

AuditRefcountsS Audit object reference counts (report problems without cleaning)

MaxAlloc Returns two-element vector indicating the maximum size object that

SymbolTable Returns a matrix of information about the symbol table

WsFrisk Force immediate workspace frisk - detects inconsistent internal state

WsMerge Force immediate workspace merge - partial freespace consolidation

WsPack Force immediate workspace pack - complete freespace consolidation

WsResize Force immediate workspace resize - commits memory

wsAllocsPerMerge Controls how often memory is merged (allocs per merge)

wsAllocsPerPack Controls how often memory is packed (allocs per pack)

 APL+Win v10 - New System Features 10

wsAllocsPerResize Controls how often memory is resized (allocs per resize)

wsResizeExcessFree Memory resize factor (percent of free-space to commit in excess)

wsResizeExcessMax Maximum excess memory commit size (bytes)

wsResizeExcessMin Minimum excess memory commit size (bytes)

wsResizeExcessUsed Memory resize factor (percent of used-space to commit in excess)

wsResizeMax Maximum memory commit size (bytes)

wsResizeMin Minimum memory commit size (bytes)

wsSplitsPerPack Controls how often memory is packed (splits per pack)

wsStatistics Returns a vector of workspace memory management statistics

wsUsage Returns a matrix of workspace memory usage statistics

The syntax of ▯it supports documentation, get and set operations:

 Documentation, e.g. ▯it „?wsAllocsPerMerge‟ results in “Controls how often memory is merged

(allocs per merge)

 Get, e.g. ▯it „wsAllocsPerMerge‟ results in an integer value

 Set, e.g. „wsAllocsPerMerge‟ ▯it 20000

 APL+Win v10 - New System Features 11

To review current workspace memory usage:

Based on this ▯it information, the ▯it options as well as the APL+Win start-up parameter WsSize or

the new start-up parameters WsSizeLow and WsSizeHigh, WsStackMin, WsStackMax, can be

appropriately set to achieve maximum performance. The new start-up workspace parameters are specified

as follows:

 APLW.exe ... WsSize ...

 APLW.exe ... WsSize WsMinLow ...

 APLW.exe ... WsSize WsMinLow WsNotLow ...

 APLW.exe ... WsSize WsMinLow WsNotLow WsNotHigh ...

These parameters are positional in that their order relative to each other matters. But they do not

need to come at the beginning of the command line. That can come at the start, end, or intermixed with

other parameters. For example, you can specify something like this:

 APLW.exe 500M MyApp.INI 200M MyWorkspace.w3 100M

These size parameters can also be specified by name in the INI file (as part of the [Config] section

such as [Config]WsSize) or on the command line with a [Config] prefix such as:

 APL+Win v10 - New System Features 12

 APLW.exe ... [Config]WsMinLow=500M ...

In this case, since [Config] prefixed parameters are not positional, they can appear in any order on the

command line.

The WsSize parameter specifies the overall workspace size requested. The WsMinLow specifies

the minimum amount of that WsSize that should be allocated in low memory. By default, memory is

preferentially allocated in high memory, if available, before allocating any low memory. Use the

WsMinLow parameter to force a minimum amount of memory to be allocated in low memory.

The WsNotLow and WsNotHigh parameters specify how much memory to not allocate in low and

high memory. This is the amount of non-workspace memory to be reserved in both regions. You can also

control SI stack allocation limits via the [Config] WsStackMin and [Config]WsStackMax

parameters. These are not positional parameters on the command line, but as with workspace size

parameter, they can be specified on the command line using the [Config] prefix such as:

 APLW.exe ... [Config]WsStackMin=10M ...

Sizes may be specified using integer or decimal notation including a denominational suffix (listed below).

For example, you can request a 1.5 Gigabyte workspace with at least 200 Megabytes allocated in low

memory like this:

 APLW.exe ... 1.5G 200M ...

Each memory size specification can be optionally followed by a denominational suffix from the following

list (case insensitive):

 K Kilobytes

 M Megabytes

 G Gigabytes

 P percentage of physical memory (up to 2 GB - this is legacy)

 % percentage of available virtual memory

The P notation (percent of physical memory) is a legacy parameter retained for compatibility with

previous versions. It specifies the percent of total physical memory on the machine, up to the first 2 GB.

On machines with more than 2 GB of memory, this parameter still is limited to 2 GB maximum. The %

notation is a percent of available virtual memory. For the WsSize parameter, this is the percent of Total

Virtual Memory available in both low and high memory. For WsMinLow and WsNotLow, this is the

percent of virtual memory available in low memory (below the 2 GB line). For WsNotHigh this is the

percent of virtual memory available in high memory (above the 2 GB line). For

WsStackin/WsStackMax this is scaled relative to the WsSize setting.

 APL+Win v10 - New System Features 13

Insider’s Tour of APL+Win Memory Architecture

The enhancement of maximum workspace size was implemented by keeping APL+Win a 32-bit

application system so that most existing ActiveX and DLL components, as well as assembly language

programs and other ▯call code, will continue to work without modification. Part of the effort in

implementing this enhancement lays the groundwork for a possible future 64-bit version of APL+Win.

On a 32-bit Windows operating system version, a 32-bit application is normally limited to the

address space below the 2GB address pointer. The „4GB tuning option‟ allows 32-bit application address

up to 3GB on a 32-bit Windows operating system.

On a 64-bit Windows operating system, a 32-bit application system (WOW65) is limited to the

address space below the 4GB address pointer.

Windows operating system dlls are immovably-positioned in a manner which fragments the

memory space available to application systems into two large, non-contiguous blocks. Previously

APL+Win utilized only contiguous memory, but APL+Win v10.0 was enhanced to support non-

contiguous memory.

 APL+Win v10 - New System Features 14

The WsSize start-up parameter controls the maximum workspace size for the application system.

The default workspace size is 75% of the first 2GB of physical memory. Memory is reserved, but not

committed, in one contiguous block at the start of execution and not released until .

The remaining memory available to the application system is used by , , dlls, ActiveX

objects and the APL+Win session manager.

 APL+Win v10 - New System Features 15

APL+Win workspace memory, which remains constant, is divided into three regions:

 Committed APL+Win object memory (arrays, symbol table, etc.) The object memory is divided into

in-use and un-used regions

 Committed ▯SI Stack Space (execution state, values of locals)

 Uncommitted memory available for either APL objects or stack space

 APL+Win v10 - New System Features 16

On Windows 32-bit operating system with „4GT tuning‟ on, more memory can be allocated to an

application system. The larger available workspace size is not available as a contiguous block, so the

APL+Win memory manangement methodology was enhanced to support two memory blocks separated by

the immovable operating system dlls.

 APL+Win v10 - New System Features 17

There is „no free lunch‟ however:

 The „4GT tuning‟ option reduces the size of the file cache, paged pool and non-paged pool which can

adversely affect application systems with significant networking or file I/O

 The „4GT tuning‟ option must be explicitly enabled

 The hardware must have more than 4GB of RAM

 The increased workspace size may „starve‟ other simultaneously-running application systems for

memory.

 Some ActiveX objects and dlls may fail if consigned to a memory address above 2GB.

 Some pre-loaded dlls can limit available workspace size.

„Segmented‟ memory allocation for the APL+Win-based application system with „4GT‟ On:

 The start-up WsSize parameter controls overall WS size

 Default WsSize is 75% of available virtual application memory

o On a 32-bit OS, this is approximately 2.25GB

o On a 64-bit OS, this is approximately 3.00GB

 The upper memory segment is all above the 2GB address

 The lower memory segment uses the remaining WsSize below the 2GB address

 If used, the minimum lower memory segment size is 128Kb

 If the requested WsSize completely fits in the upper memory segment, no lower memory segment is

used

 The new start-up parameters, WsSizeLow and WsSizeHigh may be used to explicitly control the size

of the upper and lower memory segments

 The default memory size or WsSize or both WsSizeLow and WsSizeHigh may be used

 Negative parameter values specify the amount not used

 Parameters can specify units by suffixes:

o % Percent of Virtual Memory

o P Percent of Physical Memory

o G Gigabytes of Memory

o M Megabytes of Memory

 APL+Win v10 - New System Features 18

o K Kilobytes of Memory

o Bytes specified with no suffix

Allocation of Workspace Memory with „4GT‟ On:

 APL+Win v10 - New System Features 19

When APL+Win is used on a 64-bit Windows operating system:

 „4GT‟ is automatically on

 Available application system memory is increased from 3GB to 4GB

 APL+Win runs in 32-bit compatibility mode (WOW64)

 APL+Win v10 - New System Features 20

During the operation of an APL+Win application system, the workspace memory undergoes

periodic reorganization as follows:

This diagram is simplified and does not illustrate the following additional functions which may

apply when the APL+Win workspace memory is reorganized during application system execution:

 Freed objects are Stored on a Free List (a set of several link lists aggregating objects of similar size

ranges together)

 New allocations Search the Free List before allocating objects from Unused Memory –If necessary,

objects from the Free List are Split into used and free parts (if they are larger than the requested size)

and the free part is put back onto the Free List

 Free List entries are periodically Merged to consolidate contiguous free objects into larger blocks.

The result of merging is a transformed Free List containing larger blocks

 If there isn‟t a sufficiently large object on Free List, we Allocate Unused Memory for the object

 If there isn‟t sufficient Unused Memory for the allocation we Resize the workspace by adjusting the

Committed size to increase the size of Unused Memory

 A WS FULL error is signaled if we cannot Commit a sufficiently large block of Unused Memory

 APL+Win v10 - New System Features 21

What is the largest allocable APL+Win object size?

 When only one memory segment is employed by the application system, ▯wa may be used.

 When „4GT tuning‟ on a 32-bit operating system or a 64-bit operating system is used and two memory

segments are employed, ▯wa cannot be used because it reports total memory available, but an

APL+Win object cannot span two memory segments. In this case ▯it „MaxAlloc‟ which returns a

2-element vector:

o Element #1 is the maximum size object that can be allocated in the current workspace

memory

o Element #2 is the remaining workspace size after allocating the maximum size object\

Debug and Release Execution Modes

The command can query or change the debug/release execution mode. This can also be done

programmatically via . Debug mode is a property of the active workspace. It is saved and loaded

with it (by default). The configuration parameter can temporarily reinstate debug

mode in a release mode workspace. This can be useful for debugging deployed applications.

When debug mode is enabled the , , , and statements behave as

described below. Whenever debug mode changes, all functions in the workspace are “reflowed”. In

release mode this causes debug statements to become logically invisible as if they were comments.

Reflowing calculates the next-statement pointer for normal statements to make debug statements

completely skipped without incurring any execution overhead, not even one machine cycle. In release

mode, debug statements are not just inexpensive, they are literally free. ‟s Internal Representation

() command lets us examine this in detail. When debug mode is we have the following:

 APL+Win v10 - New System Features 22

Some output from these commands is omitted for brevity. The column shows the next

statement to execute following each statement. The part only exists for “decision” lines (such as

line), which must make true/false decisions about what statements come next. The next statement for

line tells us the first line to execute. This is set to meaning the first three lines of debug statements

will be completely skipped and execution will start on line with the “normal” line. Its next statement

is . This skips over the remaining debug statement and exits from the function. When debug mode is ,

this flow pattern changes completely as shown below:

A plus () is displayed in the column when the next statement immediately follows the

previous one. The () shown as the next statement for line means execution begins at line with

the first debug statement. This is followed by two more debug statements until we reach the “normal” line

and then continue with the final debug statement.

Even when debug mode is the flow optimizer avoids executing unnecessary lines (for example,

lines and are never executed). When line finishes execution we continue on line

without executing line . Logically we need to execute line to make a debug or non-debug

decision about whether line should to be executed or not. However, when we reflow the function for

debug mode, we already know the decision on line will always be true so we can skip that line and

jump directly to line for any line that would normally flow into line . Similarly, when line

finishes execution it skips over line because the flow optimizer knows there is nothing to execute

there.

Execution of this code with debug mode and illustrates these modes in action:

Testing

Testing code can be defined inside … blocks. A test block contains an

initialization section followed by any number of or clauses as illustrated by the example

below:

 APL+Win v10 - New System Features 23

During normal execution, the block in is logically invisible. Line executes and

returns without executing the test code. But when is selected by the argument
2
 of or

line is skipped and only the test code is executed. One test can invoke others via the function.

As with normal function execution the ambient state of system variables such as , , etc. is

used during testing. Test code can set these variables if it needs to assure they are in a given state.

The code in test blocks always executes in debug mode. Therefore, the and other debug

statements always execute in that context. However, functions called by the test code executes in the

workspace‟s debug/release mode.

When test execution begins for the example above, the initialization section sets to and to .

Then the tests defined by and clauses are executed in sequence. Any tests that fail are

noted in the test log and execution continues with the next or clause.

A future version may support declaration of local variables specific to the each block but this

version runs tests using the function‟s local variables. Variables set in one test flow into the next. If a

function contains multiple blocks they each execute independently as a new invocation of the

testing context. Local variables set in one block do flow into subsequent blocks when

present in the same function but not when in different functions. However, global variables, the state

objects, files ties, external object, etc. do flow between one block and another and therefore

execution order can be important.

 clauses are expected to run without unhandled errors. A clause may contain setup

calculations and one or more statements to check that results match expectations. If an error

occurs the test will be considered to have failed. The remaining lines in the clause will be skipped

and execution will continue with the next or clause. The use of is essential in

tests! If line didn‟t include an , an inequality of the test would not be

detected as a failure because no error would have been signaled.

 clauses are expected to cause an error. The test is considered a success if the expected error

occurs and a failure if the error does not occur. Errors are only expected to occur on the last statement of

the clause. Errors occurring before the last statement are considered to be setup failures and cause

the test to be considered a failure. An optional filter argument can denote a specific error using the same

syntax as . Any error is ok if a filter is not used. An is anticipated on line

because of the filter specified on line . Other errors are not accepted.

The … block defines code that should only run while testing. It is not the

same as a block. When testing starts the workspace is reflowed to make blocks logically

visible. They behave like comments when testing is not being done. blocks are useful during

development when bridging code is needed to fill in for parts of the application that are not yet functional.

This allows the testing cycle to begin earlier during development than would otherwise be convenient.

Using for bridging code is superior to placing it directly in the function because it makes its

2
 The and argument uses a wildcard notation to select functions for testing. For example,

 selects and all functions whose names end with for testing. Of course, only

those functions selected by the argument that contain test blocks will actually be tested).

 APL+Win v10 - New System Features 24

purpose more visible, its effects transient, and helps avoid forgetting to remove it when no longer needed.

Any blocks executed during testing are noted in the test log as a reminder to remove them later.

The TraceLog Feature

The trace log is a hyper fast in-memory wrap-around buffer that can capture a history of over 134

million of the most recently executed statements with very low overhead. It can be useful for exploring

how program logic goes awry without modifying the code or changing executing timing enough to make

bug mutation likely. Triggers can be defined to dump the trace log to file whenever an error filter pattern

is matched and/or at program exit. Trace logging is controlled via four configuration file parameters:

 n Initial trace buffer size

 n Maximum trace buffer size

 1 or 0 Controls whether trace buffer is dumped to file upon exit or not

 filter Error filter pattern that triggers dumping of trace buffer to file

and four commands:

 Return the current trace buffer content as a character vector

 Clear and/or resize the trace buffer (up to max)

 Insert an identifying “mark” into buffer (useful during analysis)

 Dump the trace buffer (and other internal state info) to file now!

Refer to the separate document, “APL+Win v10 – TraceLog Execution History.PDF” for more

information.

Crash Diagnoses and Recovery

If a crash occurs, the system now creates a log file containing extensive contextual information

including the reason and location of the crash, the execution history leading up to the crash,

the SI state with partial
3
 values of all local variables at each stack level at the time of the crash, along with

user selectable global variables, and a MiniDump file. The MiniDump file can be executed by APL2000

with a post-mortem debugger to either help diagnose and fix bugs in the APL+Win system or determine if

the crash is happening in a third party component. In that case, the third party may be able to use the

MiniDump file to diagnose their bug. The system also writes an Error Event about the crash in the

Windows Event Log. All debugging files can be encrypted if an application chooses to make them secure.

In addition, a new crash recovery mechanism allows applications to either restart themselves or launch

another application in response to a system crash. This can be done as simply as entering a single line in

the configuration file like this:

RestartCmd=""%EXEPATH%" "%INIPATH%" "%WSDIR%recover.w3""

Many possible substitution %variables% may be used in addition to those shown in the example above.

Whenever the recovery application is started, the system adds a parameter to the command line giving

the name of the crash log file. The application can use this as a signal it is being restarted in response to a

crash and display a crash recovery dialog - rather than its normal startup dialogs - informing the user about

the crash and asking what action should be taken next (such as upload the log and MiniDump files to the

vendor‟s servers for analysis or restart using the application).

If the restart feature is not used, the system displays an improved message box containing vendor

contact information from parameters in the configuration file, which refers them to the log file for more

3
 A “value tip” containing up to 1024 characters (configurable length) of data from the beginning of each local

variable‟s present value and localized previous value are displayed in the extended SIE listing along with other

internal state information including the source code line and internal PCODE representation of that line for each SI

level.

 APL+Win v10 - New System Features 25

information. The text of the message box is completely configurable and parameters are also available to

suppress message boxes for cases where the application is running in a server context.

Refer to the separate documents, “APL+Win v10 – Crash Log File Encryption & Decryption

Mechanism.PDF” and “APL+Win v10 - Crash Recovery.PDF” for more information.

Inline Control Sequences

NOTE 1: The ICS feature sets has been made experimental in version 10.0. It is only

enabled for execution in the development system and not allowed in the runtime system.

Enabling for the development system requires the following entry in the INI file:

 [Experimental]

 EnableICS=1

If ICS features are executed without this feature being enabled (in runtime system

regardless of INI file setting or in development system without EnableICS=1) then the

following error message is given:

No message box prompts are displayed in either development or runtime system. The only

failure indication is the error message above. The value must be in the INI file at system

startup time. It is read from the INI file only once. Subsequent changes, after APL has

started have no effect on the behavior until the next time APL is started.

NOTE 2: The :RES clause of the :RETURNIF statement is implemented internally as an

ICS expression. This means that the :RES clause is also experimental for version 10.0. This

is not a philosophical decision. Just a practical one in order to avoid having to modify the

way the :RES clause is implemented. This does not affect the :RETURN statement with

argument. It is not tied to the EnableICS setting and is not experimental.

Inline control sequences (ICS) can articulate arbitrarily complex logical calculations with a concise

and efficient notation, which uses colon-prefixed keywords , , , , and

embedded in expressions. It uses Progressive Partial Evaluation (PPE) similar to the , , and

operators found in C, C++, C#, Java, JavaScript, etc. ICS expressions are an inversion of traditional

control structures. They may contain cascading decisions and execution alternatives in a single statement,

whereas traditional control structures involve multiple expressions spread across multiple statements

typically on multiple lines. PPE is nothing new to APL. The control statement uses PPE to jump into

the True or False clause as soon as the overall outcome can be deduced from partial results. For example:

If any of the test conditions are false the remaining tests are skipped and the False clause is executed

immediately. If a test condition is true, the next test must be evaluated to determine the outcome of the

calculation. The True clause is only executed if all tests are true. Step by step we have: if Test 1 is false,

Test 2 and Test 3 are skipped and the False clause is executed. If Test 1 is true, Test 2 is evaluated. If it is

 APL+Win v10 - New System Features 26

false, Test 3 is skipped and the False clause is executed. If true, Test 3 is evaluated. The True clause is

executed only if Test 3 is also true. Otherwise the False clause is executed.

Similarly, when the statement is followed by a series of tests, we skip the remaining tests

and begin execution of the True clause as soon as any of the test conditions are True. We only continue

evaluation of tests and eventually execute the False clause if all previous test conditions are false.

PPE is a powerful tool for simplifying program logic. For example, the first test in a series might

determine if a function‟s left argument has a value (i.e., whether called monadically or dyadically) and a

second test might check its rank or shape. If the argument doesn‟t have a value we discontinue the test

sequence early since we cannot check its rank or shape without a value. By guarding later tests with

previous tests that pre-screen certain conditions (such as existence of a value) we can efficiently and

concisely test the conditions we want with a minimum of coding and a maximum of clarity.

The … logical progression shown above using five statements can be stated more

concisely using one ICS expression like this:

The order of progressive evaluation above might not feel right to everyone at first glance. APL

executes from right to left and this might feel like it‟s going the wrong way. While there isn‟t enough

space in this paper to fully discuss the decisions that went into ICS design the following summary is

offered:

 APL executes from right to left but is conceptualized, written, and read from left to right
4
. We

usually conceive of and type the left part before the right and always read it that way.

 Conditional expressions are usually typed with the condition to the left of the objective:

This is a good thing because we tend to think of the condition before we think of the objective, or

at least we think about how to express the condition before the objective. Therefore, this ordering

minimizes the number of superficial left and right key movements required to type the expression.

 Progressive logical decisions are generally conceptualized in their order of dependency. For

instance, we need to know if a left argument exists before we test its rank or shape. So we tend to

think of existence testing before rank or shape testing.

 The left to right order of ICS progressions is reflective of this natural thought order.

 If ICS expressions were evaluated right to left like this:

we would have to type the tests in the reverse order from how we would naturally think of them.

 If we think of ICS expressions as being like diamonds with decisional powers then it is easier to

understand why the left to right ordering makes sense. They follow the same flow pattern as

diamond separated
5
 statements and are consistent with a pattern of programming that was

common in pre-control-structure days when hierarchical conditions would often be coded like

this:

 The keywords in an ICS expression are not functions or operators. They are conjunctive in nature

and exist in a different semantic space than the functional sub-expressions connected by them.

4
 The statement that APL is “conceptualized, written, and read from left to right” is subject to debate but is

consistent with the view held by every person the author has ever discussed this topic with.
5
 There probably still is not universal agreement that diamond separated statements are executed in the correct

order. There are some who may still argue that they should not exist at all or that the rightmost statement should be

executed before the left. However, the convention in all APL dialects known to the author executes them left to right.

 APL+Win v10 - New System Features 27

 It can be useful to think of ICS keywords as being like parentheses with decisional powers. ICS

keywords morph normal order of execution in a similar way and exist in a similar semantic space.

The following list shows all recognized forms of ICS expression (for brevity the form of each

expression is not shown; wherever appears it can be replaced by):

Parentheses around ICS expressions are only necessary to the extent needed to denote logical

groupings, alter progression evaluation order, or disambiguate cases where the colon-prefix of the first

keyword would otherwise be interpreted as declaring the name to its left as a statement label.

Any statement beginning with a colon-space (or any other character that is not part of an identifier

immediately following the colon) tells the interpreter to not look for labels in that statement. Either of the

following statements may be used to prevent from being interpreted as a label:

The and keywords can be used in sequences of any length. However, they cannot be mixed

in the same expression unless parentheses are used to group them like this:

The and keywords offer a binary choice between two alternative expressions. Only one

of the expressions is executed. These keyword can be used together or alone if only one choice is needed,

with the implicit other choice being no execution and no result value. If both are coded must come

before . In contexts that require a result, both clauses are required.

The keyword selects one expression from a list of choices separated by colons, which must

be followed by a space or other character that doesn‟t begin a name. The value to the left of

must be a singleton integer. It is used as a sensitive index to select one of the cases to execute. An

optional clause can be executed if there isn‟t a case corresponding to the index value. An error is

not signaled if the index does not select a case unless the expression is used in a context that requires a

value, in which case an is signaled.

 The following expression is roughly equivalent to the statement below it:

Except cannot be used to produce an argument value in the way can:

 APL+Win v10 - New System Features 28

The :LEAVEIF and :CONTINUEIF Statements

The and statements provide conditional loop exit and continuation with a

single statement. This would otherwise require the three equivalent statements shown on the right below:

The :RETURN with Value and :RETURNIF Statements

The statement can now directly return a result value via its argument. For example,

returns the expression‟s value in one statement rather than a pair of assign and return statements:

Conditional returns can be done via the statement in either of the forms below:

The statement returns if its conditional argument is true or continues with the next

statement if false. It is similar in concept to the statement and replaces three statements with

one. In the case of four statements are replaced. Whenever has an argument or the

clause is used with , the expression‟s value is implicitly assigned to the result variable before

returning. The clause is not executed unless the return is taken.

If the result expression returns no value, then the statement or clause also return no

value. For example, if returns no value then will also return no value without an error:

In contrast, trying to assign a result variable like this would cause a !

The , , , and

, , and indicate how the current function was called.

returns 0, 1, or 2 for niladic, monadic, or dyadic invocation or if not a function (such as a callback).

 is equivalent to and is equivalent to .

 and allow the NO-VALUE system variable as an argument to explicitly

indicate no value. Using without an argument is not the same as unless

the result variable was valueless.

The :TRY Statement with Localization

The traditional statement only handles errors in its immediate execution context. Errors in

functions called by it are handled via the ambient handler in effect when the try block was entered.

If the ambient handler pops unhandled errors back to lower levels for handling the try block‟s

 handlers will get a chance to handle the error when it reaches their context. However, if

has a value such as execution will suspend at the point of error and not be handled by the try block.

An optional argument has been added to to allow a try-local handler to be specified. If

invoked like this unhandled errors in called functions will be popped back to the

try block for handing regardless of ambient setting. A star () used in the argument like this

 is a shorthand notation equivalent to this .

 APL+Win v10 - New System Features 29

The :TRYALL Statement

The statement provides resume-on-next-line error handling, which in some cases is easier to

use than or … . Errors occurring in its context are handled by skipping any remaining

statements on the same line and resuming execution on the next line. This is similar to the effect of setting

but without the problems doing so could cause in called functions. Conditional

statements like and cannot be used in a block but unconditional statements like

 and ICS expressions can. A try-local argument or star () notation is also allowed.

The :CATCH and :LIKE Clauses and Variable

The clause supports wildcard pattern matching to select errors in a block. It is more

concise and efficient than using APL expressions in a clause. For example, rather than this:

The same error can be selected with a clause like this:

Multiple errors can be separated by semicolon like this:

And wildcard characters can be used like this:

The last example above matches , , etc.

Patterns are matched with the new value, which is the same as . The

control characters in patterns are: () matches zero or more of any characters; () matches one of any

character; () is reserved for the future to denote a context such as a specific function; () is reserved for

the future to denote a regular-expression; () separates patterns; () makes the control character following

it behave as a literal (e.g., matches value).

Specifying a clause without an argument is a synonym for and handles any

errors not handled by previous and/or clauses (if any).

The clause uses the same pattern matching notation as but appears as an alternative to

the or clause in a statement. Rather than matching the argument

by value equivalence, it selects character scalar and vector cases matching its pattern.

The :FINALLY Clause

The clause can appear as the last clause of a statement, following all ,

, and clauses (if any). Some form of clause is normally required in a

 statement but when a clause is coded clauses are optional. The

clause defines a block of code that always executes no matter how the statement is exited (whether

by branch, return, error, continue, leave, etc). The only exceptions are actions such as , ,

niladic branch (), and system exit. Future versions may provide an option to finalize these exits too.

Code placed in a clause can be useful for cleaning up resources such as closing files and

database connections but can also simplifies program logic in many other cases.

The :NEXTCASE Statement

The statement flows from one case of a statement into the next without

branching. This can be useful for parsing varying length arguments where each element gets special

processed and then falls into the case for the next smaller length. For example, to handle up to 5 elements

the cases can be arranged as , , with the statement called

with the length of the argument array. If there are 5 elements will process its argument and then

 APL+Win v10 - New System Features 30

 into will in turn into , etc. When there are fewer elements

execution will start somewhere below and follow the same pattern as described above.

Multi-Variable :FOR Statement

The statement now supports multiple variables strand notation like this:

In the first iteration will be assigned , in the second , and so on.

The Function

The function formats its right argument into a debug log file and/or the Windows Event Log. It

may be called during debug or release mode. The log file is automatically created with a timestamp based

filename and each entry in it is prefixed by a timestamp. Newline characters are normalized to the

Windows CR+LF standard and APL characters are translated to ANSI to make the output viewable with

any standard editor. If the option is enabled the log file is encrypted as it is written.

The optional left argument controls where the output is written. D selects the debug log file (default)

while I, W, or E selects the Windows Event Log as Information, Warning, or Error events.

Refer to the separate document, “APL+Win v10 – Crash Log File Encryption & Decryption

Mechanism.PDF” for more information.

The :DEBUG, :TRACE, and :IFDEBUG Statements

The and statement‟s argument is executed only in debug mode. The

statement implicitly calls the function to write its argument‟s value to the debug log file but the

argument expression is not required to return a value (if it does not, nothing is written the debug log file).

The statement defines a block of statements that execute in debug mode only. It must end

with an , , or statement. It can be coded with or without an clause,

which executes in release mode, with additional conditions, or a combination of both. For example:

The :ASSERT and :VERIFY Statements

The and statements are identical except executes only in debug mode

whereas is always executed. They evaluate their argument and signal an error if it returns a

value and the value is not or an empty character vector (). The error message consists of the prefix

 followed by the text of the failing APL expression including comment or if

the value is a character vector, the value of the vector. Typical usage patterns are:

If these assertions were to fail, the following error messages would result:

 APL+Win v10 - New System Features 31

New Unicode Clipboard Support in Session Manager

The “Enable Unicode Clipboard” item to the Edit menu (near where it lists Cut, Copy, Paste) when

enabled (checked) allows Unicode text containing APL characters to paste into and from APL+Win. This

is bound to the Ctrl+U key for toggling Unicode clipboard mode on/off. There is also a “UNI” indicator

in the status bar when this option is enabled.

Change Edit/Replace Keystroke Shortcut to Ctrl+H to Session Manager

Added Ctrl+H as a keystroke recognized for doing Edit/Replace. This makes APL+Win consistent

with standard Windows Find/Replace key bindings and avoids the nasty behavior we used to have of

Ctrl+H being a backspace and destroying selection rather than bringing up the Replace dialog. The old

Ctrl+R keystoke still works as before but no longer shows up on the menu (which now shows Ctrl+H).

Allow Runtime System to Load Development Workspaces

The runtime system (aplwr.exe) no longer restricts the kind of workspace it can load. Now it can load

workspaces that were created via either the)SAVE and)RSAVE system commands without any

differences in behavior except that runtime workspaces are encrypted. This enhancement only applies to

runtime workspaces created in APL+Win v10.0.

The old rules still apply as far as the type of workspace the development system (aplw.exe) can load.

If the workspace was saved with the)RSAVE system command, the runtime workspace may only be

loaded in the development system that created the workspace.

 Optimization

 was enhanced to eliminate a lot of excess and unnecessary overhead when executed.

 Scalar Optimization Option Obsoleted

The new built-in scalar and array optimizations obsoleted this feature from prior versions. So

enabling this option no longer affects in APL+Win.

Allow Tabs to appears in APL code without SYNTAX ERROR

Tabs are now treated syntactically the same as SPACEs when not in quotes. Inside quotes they have

always been included into the string's value and that behavior remains unchanged. They only cause

SYNTAX ERRORs when used to indent code or comments (which often happened as a result of pasting

from another application that inserts tabs rather than spaces into the code).

New Debugging “Event Stop” Feature

The Event Stop feature makes it possible for developers to debug error handling code in ways that

were previously difficult or impossible. At the core of this feature is a new Code Walker dialog named

"Event Stop Settings" that contains the following set of checkbox options, arranged in a hierarchy, where

subordinate items are disabled if the controlling item above them is not checked. This structure is shown

below:

 APL+Win v10 - New System Features 32

 This dialog is bound to the F8 key, which can toggle the dialog display on and off (i.e., pressing

F8 from the session displays the dialog, pressing F8 again when the dialog is already displayed hides it).

You can also close the dialog via the OK button (or by pressing ENTER) or the Cancel button (or by

pressing ESCAPE). There is also a new button on the CodeWalker toolbar that displays the dialog.

 The top level "Enable Event Stops" option lets you enable or disable all other Event Stop features

with a single click. When this option is checked, all the subordinate options below it are enabled,

allowing them to be individually configured. When this option is disabled, all previous subordinate

settings are preserved, but they are temporarily disabled. Unchecking this option restores the system to

pre-version 10.0 behavior with respect to debugging of errors. Checking this option (the default) enables a

standard subset of features (described later).

 The "SUPPRESS error handling at suspension (enabled in called functions)" is one of the most

important new debugging option. It suppresses execution of normal error handling at the immediate

execution level when you are suspended (such as for debugging). This option is on by default. It prevents

the long standing annoying problem of error handlers blowing the execution context away when they

occur during suspension while debugging a problem. In the past the only way to avoid this was to reset

 to "". Doing this was problematic however, since disabling the error handler could easily be

forgetten, and running before the suspension with error handling disabled would change the behavior of

the application. Furthermore, this trick did not work if you were suspended inside of a :TRY block. In

that case, there was no way to prevent an error in immediate execution from triggering the error handling

code, possibly blowing you out of the debugging context you may have worked hard to get into.

 APL+Win v10 - New System Features 33

 Consider the following set of functions that suspend with an handler set to throw errors out

of the context they occur in so they can be handled at the next higher level. This is a common occurence

in APL error handling code, but one that makes debugging very difficult.

 Executing this code causes suspension on sus2[3] as shown below:

 You might also have gotten into this condition, with an error handler poised to blow away the

suspended context, by stepping into the code via Code Walker. However you get into this situation, it is

precarious. One false move and you have to start over to set up the suspension condition again, in some

cases blowing away hours of waiting for a bug to occur that suspends in such a case.

 The following shows what happens on a pre-version 10.0 APL+Win system, or when the

"SUPPRESS error handling at suspension" option is disabled. If you are trying to debug this code and

cause an error, the handler will execute and pop the error out of the context you were trying to

debug. For example:

 The LENGTH ERROR causes handler to execute "" which blows the

suspension at sus2[3] off of the stack and you end up suspended in the next level below, at sus1[1].

If the error handler was not localized strictly to sus2, then this error could have been progagated all the

way back to the start of execution, or at least to the top level error trap in the application.

 Then the "SUPPRESS error handling at suspension" option is enabled (as it is by default in

APL+Win v10.0) the behavior is much more desirable. Error handling does not execute for errors that

 APL+Win v10 - New System Features 34

occur in the immediate execution context above a suspension. Here's what happens instead, starting from

the same suspension level as before:

 The system simply prints out value of showing that a has occured, and

leaves you suspened again, exactly where you were before. In other words, it behaves as if was set

to "". However, the handler does not execute at all, in fact! Whatever handler was in

effect remains in effect, but its execution is simply suppressed in this context.

 If the error occurs in a function called from this immediate context, error handler works normally,

all the way back until the error reaches the immediate execution context above the suspension again. At

that point, error propagation stops because the handler does not execute. For example, consider the

following pair of functions, and the effect of their exectuion while suspended at sus2[3]:

 The error handler executes normally, propagating the error from makeerr2[1] back to makeerr[1]

and then back into the immediate execution context. However, when it reaches the suspended immediate

execution context, the handler does not fire, and the system suspends once again at sus2[3].

 The next set of checkboxes on the Event Stop settings dialog control whether errors are

intercepted before their handlers are executed, or before the final effect of a error handler take

effect (such as before exiting from the function where is called or branching to a different line of

code). The top level options are:

 IMMEDIATE execution from suspended context

 APL+Win v10 - New System Features 35

 LOCAL stepping context (where stepping started)

 REMOTE stepping context (functions called by local context)

 CALLBACK context

 The IMMEDIATE context applies the same "immediate execution above a suspension" context

that was discussed above. None of these options will apply if the SUPPRESS option is enabled, because

in that case the error handler will not be executed. So these options only apply when the IMMEDIATE

context option is disabled.

 The LOCAL context applies to errors that occur in the same function where started a Code Walker

step. Errors that occur in functions called by that starting context are controlled by the REMOTE context.

 The LOCAL context is enabled by default whereas the REMOTE context is disabled by default.

This means that when you are stepping in CodeWalker, the options below the LOCAL context will only

apply if the error occurs locally, in the function that you are stepping in. If they occur in functions called

by that function, this option will not apply, and those errors will not be trapped unless the corresponding

REMOTE options are enabled.

 Both the LOCAL and REMOTE options only apply when Stepping in Code Walker. Stepping is

defined as doing operations such as F10 (Step Over), F11 (Step Into), F5 (Resume from suspension), etc.

These options do not apply for normal execution. So these do not get in the way of error handling when

an appliction is running normally. They only apply to the Code Walker debugging context, when you are

stepping, or running after suspension. When you start execution via when a workspace is loaded, or

by typing a line and pressing ENTER in the session manager, you are not stepping in code walker and thus

these error trapping options do not apply.

 The CALLBACK context applies to the first level of execution in a callback. For example, this

would apply to an error that occurs in the onTimer event handler. But it would not apply if that error

occured in a function called by the onTimer event handler. The CALLBACK contexts is strictly at the

boundary between the previous ŒSI level and the start of execution in the callback handler. The

CALLBACK context is especially important for a couple of reasons. Sometimes errors occur in event

handler callbacks that cannot be trapped or debugged otherwise. This allows you to stop at the point

where the error is occuring, before handling, so you can see and fix the problem, rather than having it

mysteriously print an error message in the APL session without being able to trap it. In addition,

callbacks can signal errors and do branches in the context of the function level below them in the

stack. This can be the source of very hard to isolate bugs.

 Event Stops allow you to stop when these kinds of events occur so you can debug and fix the

problem.

The following example illustrates a case where

enabling Event Stops in a callback context can be useful.

I’ve created a timer object that fires an event that produces a

DOMAIN ERROR every 5 seconds. Normally, this would be

impossible to debug or even to stop without a lot of trouble.

But with the CALLBACK event stop feature, the error is

trapped before error handling is invoked so we can catch this

in the act!

 APL+Win v10 - New System Features 36

 Each of the four debugging contexts is followed by a set of three subordinate options. The

subordinate options are disabled if the controlling open above them is not checked:

 Suspend before handling errors

 Suspend before e&xiting function to signal error

 Suspend before branching from error handler

 The "Suspend before handling errors" option causes suspension of execution at the point where an

error occurs, BEFORE its , :CATCH, or :TRYALL handler is executed. This option allows you to

suspend at the point immediately before error handling. In the case of :TRY /:CATCH blocks, this

provides the ONLY mechanism you can use to catch and debug errors inside the body of the :TRY block

before they are handled by the :CATCH clauses. This allows you to debug the error where it occurs

rather than after execution has jumped into the :CATCH statements. This lets you see exactly where the

error occurred, and explore its execution context before handling the error.

 The "Suspend before exiting function to signal error" allows you to stop whenever is

about to leave the calling function to signal the error in the context that called it. This allows you to stop

to inspect the cause of the error that's about to be signalled before it leaves the context where it is being

called. You cannot do that with traditional error trapping because the calling function will already have

been exited by the time the error is signalled and the error handler is called. By then, it is too late to debug

the cause of the conditions that lead up to the function being called.

 The "Suspend before branching from error handler" allows you to stop before a handler

branches to another line to complete its error handling. In the CALLBACK context, this is slightly

 APL+Win v10 - New System Features 37

different, but the same idea applies. In that case, the branch is trying to leave the callback context and

branch into a function (perhaps a random function) in the context that was executing before the event

handler was executed. This is actually a very dangerous situation that can lead to unpredictable behaviors

in applications. In the CALLBACK context the branch might be occuring directly from the callback, or

from an handler that is executing due to an error that occured in the callback.

 When execution suspends, a popup tooltip balloon is displayed with its arrow pointing at the

suspended statement in the Code Walker window. It has a caption describing the error and the body tells

what you can do about it. For example, if you were suspended at sus2[3] as in the previous example and

pressed F10 to step to the next line, the DOMAIN ERROR that would occur there would be trapped

before handling. This would cause the following balloon message to be displayed:

 Event Stop: DOMAIN ERROR

 Suspended before executing handler

 - Press F10 to step over handler

 - Press F11 to step into handler

 - Press F5 to resume suspended step

 (Shift+F5 with Event Stops DISABLED)

 - Press F8 to configure Event Stop settings

 - Press any key or click mouse to hide this message

 APL+Win v10 - New System Features 38

Also note the new buttons that appear on the Code Walker toolbar:

The “stop sign around the E symbol” is supposed to conjure up the Event Stop

image in your mind.

There are now two different resume buttons that look like “play” buttons on

recording appliences. F5 is hooked up to the Run/Resume function (as before) and

the new Shift+F5 key is hooked up to the “play button overlaying the stop sign with

a slash through it). This is suppposed to represent Run without Stopping (with

Event Stops disabled). Anybody with better icon ideas is welcome to forward them

at any time.

 If the error occurs in a :TRY context, the message appears like this:

 Event Stop: DOMAIN ERROR

 Suspended before executing :CATCH handler

 - Press F10, etc. to step to :CATCH statement

 - Press F5 to resume suspended step

 (Shift+F5 with Event Stops DISABLED)

 - Press F8 to configure Event Stop settings

 - Press any key or click mouse to hide this message

 If the error occurs in a :TRYALL context, the message appears like this:

 Event Stop: DOMAIN ERROR

 Suspended before executing :TRYALL handler

 - Press F10, etc. to step to next line

 - Press F5 to resume suspended step

 (Shift+F5 with Event Stops DISABLED)

 - Press F8 to configure Event Stop settings

 - Press any key or click mouse to hide this message

 APL+Win v10 - New System Features 39

 In the case of the pre- handling context, you can either step OVER the error handler (by

pressing F10) or step INTO the error handler (by pressing F11). In the pre-:CATCH or :TRYALL

contexts, pressing F10 or F11 will take you to the same place, the first :CATCH statement following the

error or the next line in the :TRYALL context.

 There are other balloon messages for other kinds of Event Stops. For example, The "Suspend

before exiting function to signal error" displays a message such as this:

 Event Stop: SOME ERROR

 Suspended before exiting function to signal

 - Press F10, etc. to signal

 - Press F5 to resume suspended step

 (Shift+F5 with Event Stops DISABLED)

 - Press F8 to configure Event Stop settings

 - Press any key or click mouse to hide this message

 Whereas, the "Suspend before branching from error handler" dislays a balloon message like this:

 Event Stop: Pending branch to line [4]

 Suspended before branching

 - Press F10, etc. to branch to target line

 - Press F5 to resume suspended step

 (Shift+F5 with Event Stops DISABLED)

 - Press F8 to configure Event Stop settings

 - Press any key or click mouse to hide this message

 The Balloon tooltip was chosen because it is less invasive than a message box. You can continue

debugging without having to close it. The regular debug stepping options work as usual in this context so

you can either explore in immedite execution mode, or press F5, F10, F11, etc to continue in various

ways. The balloon automatically disappear as soon as you press any key or click the mouse. It can be

redisplayed again, but not directly. If there is a Event Stop pending when the Event Stop Settings dialog is

closed, the system redisplays the pending event stop again, when the dialog is closed. So you can

redisplay a vanished Event Stop balloon by pressing F8 twice in succession (this shows and hides the

Event Stop Settings dialog and results in the pending Event Stop balloon being displayed again.

 Whenever execution is suspended for an Event Stop that occured while stepping, the F5 key

resumes execution, but in a slightly different way than usual. It resumes to completion of the current step

that was in progress. If you were in the midst of a Run-to-Cursor operation, execution will resume running

in that Run-to-Cursor mode and stop when it reaches that point. In other words, F5 finishes the current

step that was in progress when the Event Stop interrupted it. This is convenient when you have REMOTE

 APL+Win v10 - New System Features 40

context event stops enabled. In that case, an error might stop several levels deeper in the stack then

were you started stepping. You can resume with F5 to continue back to the debugging context you were

in when the Event Stop interrupted it.

 You can start execution from the APL session by pressing F5 rather than ENTER to start

execution. However, note that in that case, since execution starts from the immediate execution context,

the LOCAL option will not apply to anything other than errors being throw back to that level. You must

enable the REMOTE option in order to trap errors that occur when starting execution from the command

line with F5.

 The Shift+F5 key (or corresponding menu and toolbar options) can be used to resume execution

after suspension with Event Stops temporarily suppressed. This allows you to resume after a suspension

without allowing any subsequent Event Stops until that execution segment comes to an end. This

emulates what would have happened if execution had started from the command line via the ENTER key.

Note that Shift+F5 can also be used to start execution from the command line (rather than pressing

ENTER). That will suppress Event Stop during that execution.

 But it also suppreses event stops for non-stepping contexts such as the CALLBACK and

IMMEDIATE contexts.

 The default settings are chosen to be as uninvasive as possible. They fix the problem with error

handlers blowing the execution context during suspensions (i.e., the SUPPRESS mode is on by default).

They also catch errors that occur in the LOCAL stepping context. Those are the only options that are on

by default. The REMOTE context is off to avoid trapping of possibly normal error conditions that get

properly handled in functions called by the stepping context. If you want to trap errors at the point of

origin in a called function you can enable the REMOTE context to do that. Similarly, errors may occur in

callbacks that do not affect program execution and are basically benign. So by default CALLBACK error

trapping is off also. However, if you have a problematic error occuring in a callback handler, you can

easily enable this option to catch it.

 In addition to the balloon messages displayed when Event Stops occur, they are also indicated in

the display as an extended form of suspension. Normal suspensions are shown with a star (*)

following the suspended function's name and line number (or other context indicator such as an execute or

execute prefix). So a normal)SI display looks like this for a suspended function:

 However, when suspended for an Event Stop, this suspension notation is enhanced with a curly-

brace enclose suffix such as this:

 If we step into the error handler and continue execution, we'll eventually get to the point where an

error is signalled. The pending Event Stop for that will appear in like this:

 APL+Win v10 - New System Features 41

 If the error handler is trying to branch out of an handler, the will appear like this:

 These extensions are intended to "look like" regular suspensions to any utility functions that

programmatically inspect the stack. Most such utility functions check for suspension levels by

simply finding rows of that contain a "*" character. Those functions will continue to work without

fication. This was a superior solution to adding a new level with an unexpected format that would

have more likely been confusing to utility code.

 The Event Stops feature is expected to be substantially enhanced in a future version of the system

to include error filtering so that stops can be triggered to occur only for certain error or only in certain

functions. In addition, it is planned to replace the existing feature with integration into

the Event Stop system. Because the representation of advanced Event Stop filtering has not yet been fully

worked out, the present version of the system does not provide a system variable that contains the event

stop settings. It is planned this will be introduced in the future as . Because of this, there is no way in

APL+Win v10.0 to preserve or programmatically change Event Stop settings between sessions. They are

reset to the default at the start of every APL session.

 However, the default settings make them both useful and "safe". They are "safe" in the sense that

the default settings cannot cause unexpected suspensions in production applications. They only affect the

immediate execution and local stepping context. Neither of those contexts can exist in a production

application. It would actually be a good idea to enable CALLBACK error trapping by default. However,

this option is off by default because we did not want to have an effect in production applications.

Allow :RETURN argument to specify result value

 This enhancement extends the syntax of the :RETURN and the :RES clause of

:RETURNIF statements and adds a new system variable. For example:

The :RETURN statement now allows an argument to specify the result value. For example, if local

variable Z is declared as the result for function Foo as shown below, then in the past you had to do the

following to set the value of Z and return it from the function:

 APL+Win v10 - New System Features 42

 But now you can do it like this:

 Note that in the second case when :RETURN specifies an argument, it is not necessary to assign a

value to result variable Z. The argument to the :RETURN statement is used as the function result value

regardless of whatever value (if any) was previously assigned to Z. In fact, you can use a :RETURN

statement with an argument to return a value from a function that does not declare a result variable!

 When an argument is not used with :RETURN the behavior remains as in the past. The current value

(if any) bound to the declared result variable for the function is returned by the function. But when an

argument is specified, the value of the argument expression is used as the result value regardless of the

value of the declared result variable or even the existence of a result variable declaration.

 If the value expression does not return a value, such as calling some function that doesn't set a result

value, then the function executing the :RETURN statement does not return a value either. The new NO-

VALUE system variable can be used to state this explicitly like this:

 is available as a way to explicitly return no value, overriding whatever value might

have been previously set for the declared result variable. It gives a VALUE ERROR when used in ALL

other contexts. In other words, it is just like referencing a undefined name, in all contexts other than as

return argument.

 If the statement above is executed, any declared result variable is ignored and the function does not

return a value. If Z is the declared result variable, then the statement above is functionally equivalent to

the statement below:

 As with the :THEN keyword, the parenthesis shown in the first case above are only necessary if the

leading colon (:) of the :RETURN keyword could be confused with statement label syntax. So you can

code this:

 A > 10 :RETURN X

but the following would be confused with statement label A followed by statement "RETURN Y" which

might or might not be detected as an error depending upon how (or if) the RETURN and Y names are

defined in the workspace:

 A :RETURN Y

 So parens would be required like this:

 (A) :RETURN Y

 or like this:

 (A :RETURN Y)

 APL+Win v10 - New System Features 43

 When a condition prefix is specified the :RETURN keyword MUST be followed by an result value

expression. If you don't want to return a value you can use as the argument.

 When the :RETURN statement specifies an explicit result value the declared result variable (if any) is

assigned that value. If there isn't a declared result variable, then the result value is stored in a special

"hidden" result variable that is implicitly localized in the function header (but not shown).

 Note that you CANNOT use the explicit result form of :RETURN with a ▯-name as the declared result

variable!

 In the future, if we allow multiple result variables to be declare, you will not be able to use them with

an explicit :RETURN value. That's because there isn't any way to assign an arbitrarily shaped result value

to a vector-shaped strand of names in such a way that they can be returned as the result. The :RETURN

statement with an argument will only be valid to use with functions that declare ONE or NONE result

variables.

New :RETURNIF, :LEAVEIF, and :CONTINUEIF Control Structure Statements

 The new :RETURNIF, :LEAVEIF, and :CONTINUEIF statements allow conditional return from a

function and exit/continue from a loop. These statements are shortcuts for an :IF statement containing a

corresponding :RETURN, :LEAVE, or :CONTINUE. The following statements:

 can be replaced by the much more compact versions below:

 In addition, the following :RETURN with result value argument:

 can be replaced by the following single statement:

 Because there isn't an argument option for :LEAVE or :CONTINUE they don't support a :RES clause.

 APL+Win v10 - New System Features 44

 NOTE: The new :RETURNIF statement with :RES clause replaces the :RETURN statement with

conditional prefix. The :RETURN statement without a prefix allows an optional result value following the

:RETURN keyword. But the conditional prefix no longer works and this previous syntax:

 Has been replaced by the following:

Implement :TEST,)TEST, and TEST

 The :TEST statement controls a block of statements that are not run during normal program

execution. Any :TEST blocks in your code essentially disappear from normal program execution as if

they were comments. They are not reachable and result in a DESTINATION ERROR if you try to branch

into them under when running the function normally. The :TEST statement has this block structure:

 :TEST

 init statements

 :PASS

 pass statements

 :FAIL [error]

 fail statements

 :ENDTEST

 When a test block begins execution, the locals and labels declared for the function that contains it

are localized and labels set to their declared line values, like a normal execution of the function. However,

arguments are not assigned (as if the function were invoked niladically). And if you assign a result to the

result variable, its value is discarded upon return from the test. A future version may allow local variables

to be declared as part of the test block such as this:

 Labels can not be declared INSIDE :TEST blocks (but labels can be declared in the normal code

outside of test blocks). You get a if you try to branch from inside a test block

to outside (or vice versa).

 Functions that are being tested display in with a "{Test}" suffix. displays as:

 Foo[27] {Test}

when testing Foo[27]. The {Test} extension is intended to be transparent to utility functions that inspect

. Any such function that parses the function[line] code should continue to work normally in most

cases (assuming they don't also check for specific patterns following the closing bracket following the line

number. Most such utilities only look past that point in an line by scanning for lines containing "*"

 APL+Win v10 - New System Features 45

as a suspension indicator. So hopefully, the {Test} extension will not create too many problems for

existing utility code.

 Testing is invoked via the)TEST command or function. Their argument allow pattern

specifications for the names of functions to be selected for testing. The patterns may contain * and ?

wildcard characters similar to those allowed in the :CATCH clause argument.

 or

 Both lines above test functions Foo, Goo, and all functions that end with "ish" in their names. Of

course, only those functions matching the pattern that contain :TEST blocks are actually tested.

 Any name or pattern prefixed by an UP-ARROW (↑) prefix is executed such that test failures

cause an Event Stop to occur.

 The prefix applies only to the next function (or set of functions if a wildcard pattern is used).

 When tests are running, is set to ' so that unhandled errors that occur in

called functions are propagated back to the :TEST context if they are not handled by the called functions.

For example, the following allows you to debug the code during tesing of Foo:

)TEST ↑Foo

 Example execution of)TEST on the <test1> function is shown below:

 APL+Win v10 - New System Features 46

 The following test includes failures:

 APL+Win v10 - New System Features 47

 APL+Win v10 - New System Features 48

 The following example has a failure in the initialization section and therefore skips execution of

all its :PASS and :FAIL cases:

 APL+Win v10 - New System Features 49

The :IFTEST statement defines a block of statements that are conditionally execute depending upon

whether the system is running in test or normal mode. It is stated like this:

 :IFTEST

 test statement(s)

 :ELSE

 non-test statement(s)

 :ENDIFTEST

 APL+Win v10 - New System Features 50

 This conditionally executes code in either the test clause when a function is executed in test mode.

If an :ELSE it coded, the non- test statements are executed when not run in test mode.

 This is similar to the :IFDEBUG statement except that the :IFTEST function does not have zero

overhead when testing is not being done.

 The test statement's don't executed in normal execution. But there is a small overhead each time

the :IFTEST statement is called. So it is not as optimized as :IFDEBUG in release mode. That :IFTEST is

a temporary block of code, which is intested to be for "bridging code" during development and should be

eliminated once development is done. When you run a)TEST containing :IFTEST blocks, they are listed

in the)TEST results as a reminder to remove the tests once they are no longer needed.

 APL+Win v10 - New System Features 51

New :EX Control Structure Statement

The :EX statement is used in cascading decision statements (such as:AND/OR extensions of :IF,

:WHILE, etc.) statements as a place to compute something before taking the next decision. The :EX clause

is not allowed in ICS expressions for version 10.0 but it may be supported in the future.

 For example:

The values you calculate in a :EX clause may be needed as inputs to the next conditional :AND/OR

test in the sequence. Perhaps you need to compute a Boolean vector, V, that's used in more than one place

in the conditional expression that follows, but the value of the V is not directly decisional. It is just needed

in order to make the next decision. However, because it is used twice in the decisional logic, you would

 APL+Win v10 - New System Features 52

like to avoid calculating the same value twice in that expression. Being able to assign it to an intermediate

variable is very convenient. The pair of equivalent examples above make decisions based on cond1 and

cond2, then they "calculate some intermediate values" in the pair of :EX expressions that may be needed

for the cond3 decision. The :EX statement allows you to defer calculation of a value until you get to

the point in the decision logic where it is going to be needed, but without requiring an additional logical

level (such as a nested pair of :IF statements) in order to express it).

Allow Localization and Assignment

 can now be localized to preserve its value upon exit from a function. This allows the state of

 to remain unchanged upon exit from a function that may have produced errors and changed the state

of during its execution. can also be assigned a character vector or scalar value. If the value

being set contains any embedded , it is truncated at that character.

Allow Scope Left Argument to and

 can now be called like this:

 1 Names

 2 Names

 Scope 1 Names

 Scope 2 Names

where Scope is the same as the Scope argument that can be used with , to specify the scope at

which to look for the value.

 can be called monadically or dyadically with a simple left argument like this:

 For example:

 APL+Win v10 - New System Features 53

Clean Orphans on Every)LOAD,)COPY, and)SAVE Operations

Orphans (abnormal objects) are automatically cleaned every time a workspace is loaded, copied,

or saved. This is done silently, without any notifications to the user when orphans are discovered. Orphan

cleaning can be suppressed for)LOAD,)COPY, and)SAVE via the [Config]NoOrphanClean parameter.

The default value (0) does not suppress orphan cleaning. This parameter may contain the sum of the

following values to selectively suppress orphan cleaning. Normally, the only option that makes sense to

suppress is cleaning of orphans on)SAVE so that workspaces in which orphans are being generated can

be saved for inspection by APL+Win developers. The available options are:

 0 Do not suppress orphan cleaning

 1 Suppress orphan cleaning for)SAVE

 2 Suppress orphan cleaning for)LOAD

 4 Suppress orphan cleaning for)COPY

Suppress “Virtual Memory Over Commit” Dialog Box

Add INI file parameter [Config]VirtualCommitPrompt=1 or 0 to control what happens when

virtual memory cannot be committed. This allows server applications to gracefully execute without

displaying a message box to a non-existent user. The default has been changed so that the memory over-

commitment dialog is not displayed by default. It is only displayed when this option is set to 1. When this

option is set to 0 (the default), rather than prompting the user in memory overcommit conditions, we

instead signal WS FULL error. If the commit failure occurs when trying to load a workspace, the error

message is WS TOO LARGE rather than WS FULL.

This is a very unusual error condition, and would be preceded normally by a huge degradation in

system performance as less and less memory becomes available on the system overall. By returning an

error rather than prompting, we completely avoid the problem of hanging server applications, as well as

mystifying users with a cryptic prompt that would often be more confusing than helpful.

When [Config]VirtualCommitPrompt=1 is set, the system crashes with a "WS FULL: UNABLE

TO COMMIT VIRTUAL MEMORY" message ONLY after the message box has been displayed and if

the user presses its CANCEL button indicating they want to terminate APL+Win rather than wait for

virtual memory to become available. If the user clicks the OK button, APL+Win will resume trying to

 APL+Win v10 - New System Features 54

commit the virtual memory, and will redisplay the message box again if it cannot do so. This cycle

continues until the memory becomes available or they give up and presses the CANCEL button, leading to

the crash that is correctly described already. Recovery applications can search for this string in the log file

as a signal to go gently with respect to memory usage in the restarted application.

	Title Page - APL+Win v10 New System Features
	Introduction
	What’s New?
	Why These Features?
	New Features in Detail
	Execution Speed Improvements
	Application System Tuning To Select Workspace Size
	Insider’s Tour of APL+Win Memory Architecture
	Debug and Release Execution Modes
	Testing
	The TraceLog Feature
	Crash Diagnoses and Recovery
	Inline Control Sequences
	The :LEAVEIF and :CONTINUEIF Statements
	The :RETURN with Value and :RETURNIF Statements
	The []VALENCE, []MONADIC, []DYADIC, and []NOVALUE
	The :TRY Statement with []ELX Localization
	The :TRYALL Statement
	The :CATCH and :LIKE Clauses and []EM Variable
	The :FINALLY Clause
	The :NEXTCASE Statement
	Multi-Variable :FOR Statement
	The []LOG Function
	The :DEBUG, :TRACE, and :IFDEBUG Statements
	The :ASSERT and :VERIFY Statements
	New Unicode Clipboard Support in Session Manager
	Change Edit/Replace Keystroke Shortcut to Ctrl+H to Session Manager
	Allow Runtime System to Load Development Workspaces
	[]WGIVE Optimization
	Allow Tabs to appears in APL code without SYNTAX ERROR
	New Debugging “Event Stop” Feature
	Allow :RETURN argument to specify result value
	New :RETURNIF, :LEAVEIF, and :CONTINUEIF Control Structure Statements
	Implement :TEST,)TEST, and TEST
	New :EX Control Structure Statement
	Allow []DM Localization and Assignment
	Allow Scope Left Argument to []AT and []SIZE
	Clean Orphans on Every)LOAD,)COPY, and)SAVE Operations
	Suppress “Virtual Memory Over Commit” Dialog Box

